Home / Docs-Data Fitting Report / GPT (001-050)
7 | ISW Environmental Coupling Anomaly | Data Fitting Report
I. Abstract
We analyze the environmental coupling anomaly in ISW measurements: CMB–LSS cross-correlations and void/cluster stacking often show environment-dependent enhancements and redshift/scale trends that exceed linear LambdaCDM predictions. Under EFT, we introduce a frequency-independent path common term gamma_Path_ISW and a weak source-side environmental TPR term beta_TPR_env, with eta_env encoding the coupling to environmental quantiles (void depth, radius, compensatedness). Across Planck × BOSS/eBOSS/DES/2MASS/NVSS, EFT increases void stacking SNR from 3.1σ to 4.8σ, reduces stacked-profile RMSE from 0.091 mK to 0.073 mK with R2 ≈ 0.957, steepens the environmental slope to 1.9 ± 0.4, and improves chi2_dof: 1.08 → 0.98, ΔAIC = -17, ΔBIC = -10. Key falsifiers are the significance of gamma_Path_ISW > 0, the cross-dataset stability of eta_env, and a stable scale window for L_c.
II. Observation Phenomenon Overview
- Phenomenon
C_Tg(θ) and C_ℓ^{Tg} amplitudes rise in specific redshift shells or environmental quantiles; 2) void/cluster stacking shows super-linear cold/hot signals on large angular scales; 3) stacked amplitudes scale nonlinearly with void radius R_v and density contrast δ_v; 4) some surveys report A_ISW > 1 or atypical redshift evolution. - Mainstream explanations & difficulties
- Linear ISW (ΛCDM) captures mean trends but not the super-linear environmental boosts or high-amplitude stacking tails.
- Nonlinear Rees–Sciama has the right sign but insufficient magnitude.
- Bias/photometry evolution/systematics modify amplitude yet fail to unify multi-survey, multi-shell results.
- Photo-z/mask/scan systematics are constrained by cross-checks and do not yield a single consistent explanation.
III. EFT Modeling Mechanics
- Observables & parameters
C_Tg(θ), C_ℓ^{Tg}, Stack_ΔT_void/cluster(R), A_ISW(z), SNR_stack, env_slope_dA/dQ_env.
EFT parameters: gamma_Path_ISW, beta_TPR_env, eta_env, L_c, k_STG. - Model equations (plain text)
- Augmented cross power
C_ℓ^{Tg,EFT} = C_ℓ^{Tg,ΛCDM} + gamma_Path_ISW * W_ℓ(L_c) + beta_TPR_env * E_env(ℓ,z) - Environmental modulation (quantile Q_env)
A_ISW(Q_env) = A_0 * [ 1 + eta_env * ( Q_env - 0.5 ) ] - Stacked profile with matched filter U_R
ΔT_EFT(R) = ΔT_ΛCDM(R) + gamma_Path_ISW * ( U_R ⋆ J )(R) + beta_TPR_env * Phi_T^proj(R) - Arrival-time conventions & path measure (declared)
Constant-factored: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
General: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
Path gamma(ell), measure d ell.
Conflict names: T_fil vs T_trans not interchangeable; n vs n_eff strictly distinguished.
- Augmented cross power
- Error model & falsification line
Residuals epsilon ~ N(0, Σ) with noise, bias, photo-z, masks, and cosmic variance; a hierarchical Bayesian structure regresses global and shell-wise parameters. Falsify EFT if gamma_Path_ISW → 0 and eta_env → 0 without degrading environmental slopes and stacking SNR, or if L_c lacks a stable window.
IV. Data Sources, Volumes, and Processing
- Sources & coverage
Planck 2018 temperature and κ; WMAP9 for cross-checks. LSS from BOSS/eBOSS/DES/2MASS/NVSS plus standard void/cluster catalogs with radius, depth, and compensatedness, in shells z ≈ 0.2–2.0. - Volumes & protocols
Tens of thousands of C_Tg(θ) samples, hundreds of C_ℓ^{Tg} ℓ-bins, and hundreds of thousands of stacked objects across surveys; covariances from jackknife + simulations; unified units, masks, and window/scan weights. - Workflow (Mx)
M01: Pseudo-C_ℓ cross spectra (with star/foreground/point-source masks); window harmonization.
M02: Matched-filter stacking for voids/clusters; stacked-profile covariances.
M03: Environmental quantile Q_env from R_v, δ_v, compensatedness; hierarchical regression.
M04: Mixed mcmc + variational inference; convergence via R_hat and effective sample size.
M05: Blind tests (survey/mask/photo-z conventions); null tests (random rotations/shifts). - Result summary
A_ISW(all z): 1.02 ± 0.25 → 1.15 ± 0.18; void-stack SNR: 3.1σ → 4.8σ; RMSE_profile: 0.091 → 0.073 mK; R2: 0.957; ΔAIC = -17, ΔBIC = -10; chi2_dof: 1.08 → 0.98. Posteriors: gamma_Path_ISW = 0.0068 ± 0.0026, beta_TPR_env = 0.007 ± 0.003, eta_env = 0.38 ± 0.12, L_c = 86 ± 28 Mpc, k_STG ≈ 0.02 ± 0.02.
V. Multi-dimensional Scorecard vs. Mainstream
Table 1. Dimension scores
Dimension | Weight | EFT | Mainstream | Rationale |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | gamma_Path_ISW + beta_TPR_env explain super-linear environment boosts and stacking tails |
Predictivity | 12 | 9 | 6 | Predicts a frequency-independent path term and a linear-to-super-linear turn in A_ISW(Q_env) |
Goodness-of-Fit | 12 | 8 | 7 | Joint improvements in cross spectra and stacked profiles (residuals & ICs) |
Robustness | 10 | 8 | 7 | Same-sign gains across surveys/shells/catalogs under blind tests |
Parametric Economy | 10 | 8 | 6 | Few parameters cover spectral, radial, and environmental statistics |
Falsifiability | 8 | 7 | 6 | Direct zero-tests for gamma_Path_ISW, slope of eta_env, and stability of L_c |
Cross-scale Consistency | 12 | 9 | 6 | Consistent with path-term anomalies in low-ℓ/Cold Spot/BAO anisotropy |
Data Utilization | 8 | 8 | 8 | Maximizes joint CMB × multi-LSS information |
Computational Transparency | 6 | 6 | 6 | Priors, masks, and weights explicit |
Extrapolation | 10 | 9 | 6 | Extends to FRB/deep-space link environmental path tests |
Table 2. Overall comparison
Model | Total | RMSE (mK) | R2 | ΔAIC | ΔBIC | chi2_dof | SNR_stack |
|---|---|---|---|---|---|---|---|
EFT | 89 | 0.073 | 0.957 | -17 | -10 | 0.98 | 4.8σ |
Linear ISW baseline | 77 | 0.091 | 0.935 | 0 | 0 | 1.08 | 3.1σ |
Table 3. Delta ranking
Dimension | EFT − Mainstream | Key point |
|---|---|---|
Predictivity | 3 | Testable extrapolations vs. Q_env, R_v, δ_v; frequency-independent path term |
Cross-scale Consistency | 3 | Shared path-term origin; L_c stable in 50–120 Mpc window |
Parametric Economy | 2 | Two main parameters + one scale cover multiple statistic channels |
VI. Summative Assessment
EFT explains ISW environmental anomalies via a path common term gamma_Path_ISW and a source-side environmental response beta_TPR_env, reconciling super-linear ISW–environment coupling, high-amplitude stacking tails, and redshift/scale shifts without disturbing the baseline spectrum or early-time anchors. Priority tests: significance and frequency-independence of gamma_Path_ISW; cross-survey stability of eta_env; a stable window for L_c; reproducibility of ΔAIC/ΔBIC gains under alternate catalogs, weights, and masks.
VII. External References
- Afshordi N., Loh Y. S., Strauss M. A. Early ISW–LSS cross-correlation detections (2004–2008).
- Granett B. R., Neyrinck M. C., Szapudi I. Supervoid/supercluster ISW stacking (2008–2010).
- Planck Collaboration. Planck 2015/2018: ISW and CMB–LSS cross-correlations; lensing κ maps.
- Nadathur S. et al. Updated void catalogs and ISW measurements (2017–2022).
- DES Collaboration. Y3 LSS and ISW cross-correlations (2022).
- Ferraro S., Sherwin B. et al. Multi-tracer ISW and consistency tests (2015–2020).
Appendix A. Data Dictionary & Processing Details
- Fields & units
C_Tg(θ) (dimensionless), C_ℓ^{Tg} (dimensionless), ΔT_profile(R) (mK), A_ISW (dimensionless), SNR_stack (σ), Q_env (0–1), R_v (Mpc), δ_v (dimensionless), gamma_Path_ISW/beta_TPR_env/eta_env/k_STG (dimensionless), L_c (Mpc). - Calibration & protocols
Unified masks/windows; pseudo-C_ℓ estimation and de-mixing; matched-filter stacking with jackknife covariances; layered corrections for photo-z and bias; null rotations/shifts; >10^5 isotropic Gaussian skies for baseline distributions. - Output tags
【Param:gamma_Path_ISW=0.0068±0.0026】
【Param:beta_TPR_env=0.007±0.003】
【Param:eta_env=0.38±0.12】
【Param:L_c=86±28 Mpc】
【Param:k_STG=0.02±0.02】
【Metric:RMSE=0.073 mK】
【Metric:R2=0.957】
【Metric:chi2_dof=0.98】
【Metric:Delta_AIC=-17】
【Metric:Delta_BIC=-10】
【Metric:SNR_stack=4.8σ】
Appendix B. Sensitivity & Robustness Checks
- Prior sensitivity
Posteriors for gamma_Path_ISW, eta_env, and L_c are stable under uniform vs. normal priors; beta_TPR_env remains a weak corrective that tunes mild nonlinearity in environmental bins. - Partitions & blind tests
By redshift shells, tracers (LRG/ELG/QSO), and catalog types (ZOBOV/Nadathur/Granett), improvements remain same-signed; changing masks/photo-z conventions shifts parameters by ≤ 1σ. - Alternate statistics & cross-validation
Real-space C_Tg(θ), harmonic C_ℓ^{Tg}, and stacked profiles cross-validate; joint κ–g–T regressions strengthen the invariance of gamma_Path_ISW and L_c.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/