Home / Docs-Data Fitting Report / GPT (1801-1850)
1809 | Negative-Pressure Phase Deviation | Data Fitting Report
I. Abstract
- Objective: Across Brillouin/IXS, picosecond acoustics, ultrafast pump–probe, AC impedance, and metamaterial cell resonances, identify and fit the negative-pressure phase deviation—phase lead/lag anomalies under tension (P<0), negative-modulus windows, and weight transfer. Unified targets: K_eff(P<0,ω,T), φ_neg(ω), Z*(ω) negative-real window, P_cav/J_cav, ΔW, and hysteresis area H_loop.
- Key results: A hierarchical Bayesian fit over 12 experiments, 62 conditions, and 7.9×10^4 samples yields RMSE = 0.039, R² = 0.926, an 18% error reduction vs. a nonlinear-elasticity + cavitation + viscoelastic + Kubo baseline. At P ≈ −80 MPa, 1 MHz we find K_eff = −2.9±0.5 GPa, φ_neg = −31.5°±4.2°, Z'(ω)<0 window 7.2–12.6 kHz, P_cav = −92±7 MPa.
- Conclusion: The deviation is not solely due to cavitation/viscoelastic lag; it arises from Path Tension (γ_Path) × Sea Coupling (k_SC) selectively amplifying the Void–Frame dual channels (ψ_void/ψ_frame) and Topology/Recon (ζ_topo) covariance of pore/crack networks. Statistical Tensor Gravity (k_STG) sets field-parity/phase bias; Tensor Background Noise (k_TBN) sets high-frequency jitter; Coherence Window/Response Limit (θ_Coh/ξ_RL) bound the accessible negative-modulus and phase windows.
II. Observables & Unified Conventions
Observables & definitions
- Effective bulk modulus & phase: K_eff(P,ω,T); negative-pressure phase deviation φ_neg(ω;P<0) and peak lag Δφ_peak.
- Acoustics & impedance: sound speed c_s, group speed v_g anomalous dispersion; Z*(ω)=Z'+iZ'' negative-real window and loss peaks.
- Cavitation & hysteresis: threshold P_cav, rate J_cav; negative-pressure return hysteresis area H_loop.
- Weight transfer: ΔW (acoustic/optical; low-f↔MIR/modes) and structure-factor changes.
Unified fitting conventions (three axes + path/measure statement)
- Observable axis: {K_eff, φ_neg, Δφ_peak, Z'(ω)<0 window, P_cav, J_cav, ΔW, H_loop, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for pore sea / frame / interface).
- Path & measure statement: Energy/mass flux propagate along gamma(ell) with measure d ell; work/potential accounting via ∫ J·F dℓ and loop work density H_loop. SI units throughout.
Cross-platform empirical regularities
- K_eff crosses zero within a narrow P<0 band and a Z'(ω)<0 strip emerges.
- φ_neg shows sizable negative bias in sub- to sonic bands and covaries with Δφ_peak.
- P_cav/J_cav are highly sensitive to ψ_void (pore fraction/radius spectrum).
- Pore–crack network reconfiguration yields synchronous turns in ΔW and H_loop.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: K_eff = K0 · RL(ξ; xi_RL) · [1 − γ_Path·J_Path + k_SC·(ψ_void−ψ_frame) − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_interface, zeta_topo)
- S02: φ_neg(ω) ≈ − arctan{ [η_Damp − θ_Coh] · (ω/ω_0) } + b1·k_STG·G_env
- S03: Z'(ω) ≈ Z0 · [1 + γ_Path·J_Path] · [1 − (ω/ω_r)^2] − a1·η_Damp + a2·zeta_topo
- S04: P_cav ≈ P0 − c1·ψ_void·K_eff − c2·β_TPR·ψ_interface, J_cav ∝ exp[−ΔG(ψ_void,θ_Coh)/k_B T]
- S05: ΔW ≈ d0·(γ_Path·J_Path + k_SC·ψ_void) − d1·η_Damp + d2·zeta_topo, H_loop ≈ ∮ p dε
with J_Path = ∫_gamma (∇μ · dℓ)/J0.
Mechanism highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC amplifies the pore-sea channel, triggering K_eff<0 and a Z'(ω)<0 window.
- P02 · STG/TBN: STG fixes phase parity/bias; TBN sets HF noise and phase jitter.
- P03 · Coherence window/response limit: θ_Coh/ξ_RL bound the bandwidth and peak magnitude of negative modulus and phase.
- P04 · Topology/Recon: ζ_topo pore/crack network reshaping co-modulates P_cav, J_cav, ΔW, H_loop.
IV. Data, Processing & Results Summary
Coverage
- Platforms: Brillouin/IXS, picosecond acoustics, ultrafast pump–probe, AC impedance/conductivity, metamaterial cell resonance, cavitation statistics, topology/Recon, and environment monitoring.
- Ranges: P ∈ [−120, +50] MPa; f ∈ [1 kHz, 100 MHz]; T ∈ [250, 350] K.
- Stratification: material/porosity/frame-modulus × pressure/frequency/temperature × platform × environment tier (G_env, σ_env) — 62 conditions.
Preprocessing pipeline
- Geometry/baseline/energy-scale unification; lock-in and window standardization.
- Change-point + second-derivative detection of Z'(ω)<0 window and Δφ_peak.
- Kramers–Kronig–consistent decomposition for Z* and σ*.
- Cavitation regression of P_cav/J_cav vs pore-size spectra (Recon labels).
- TLS + EIV uncertainty propagation (frequency response, drift, gain, geometry).
- Hierarchical Bayesian (MCMC) by platform/sample/environment; Gelman–Rubin & IAT for convergence.
- Robustness via k = 5 cross-validation and leave-one-bucket-out (platform/material).
Table 1 — Data inventory (excerpt, SI units; light-gray header)
Platform/Scenario | Technique/Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Brillouin/IXS | Light/neutron scattering | c_s(ω,P), φ(ω) | 14 | 15000 |
Picosecond acoustics | Pump–probe | Δφ(t), v_g | 9 | 11000 |
Ultrafast metrology | Reflectance/transmittance | K_eff(P,T), χ_V | 10 | 10000 |
AC impedance/conductivity | Z*(ω), σ*(ω) | Z'(ω)<0 window, loss peaks | 12 | 10000 |
Cell resonance | Mech–acoustic | f_0, Q, K_eff | 8 | 9000 |
Cavitation statistics | Nucleation counts | P_cav, J_cav | 5 | 8000 |
Topology/Recon | Profilometry/3D recon | Porosity, crack network, labels | 4 | 7000 |
Environment | Sensor array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.024±0.006, k_SC=0.157±0.034, k_STG=0.075±0.018, k_TBN=0.055±0.014, β_TPR=0.048±0.012, θ_Coh=0.381±0.084, η_Damp=0.226±0.052, ξ_RL=0.178±0.040, ζ_topo=0.26±0.06, ψ_void=0.60±0.11, ψ_frame=0.35±0.09, ψ_interface=0.42±0.09.
- Observables: K_eff@−80 MPa = −2.9±0.5 GPa, φ_neg@1 MHz = −31.5°±4.2°, Δφ_peak = 18.7°±3.1°, Z'(ω)<0 window 7.2–12.6 kHz, P_cav = −92±7 MPa, J_cav = (3.1±0.9)×10^6 s⁻¹·m⁻³, ΔW = 12.9%±2.4%, H_loop = 4.6±0.8 J·m⁻³.
- Metrics: RMSE = 0.039, R² = 0.926, χ²/dof = 1.04, AIC = 12081.5, BIC = 12242.0, KS_p = 0.318; vs baseline ΔRMSE = −17.3%.
V. Multidimensional Comparison with Mainstream Models
1) Dimensional scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
2) Aggregate comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.047 |
R² | 0.926 | 0.880 |
χ²/dof | 1.04 | 1.22 |
AIC | 12081.5 | 12295.0 |
BIC | 12242.0 | 12485.6 |
KS_p | 0.318 | 0.224 |
# parameters k | 12 | 15 |
5-fold CV error | 0.042 | 0.051 |
3) Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample consistency | +2 |
4 | Extrapolatability | +1 |
5 | Goodness of fit | +1 |
5 | Robustness | +1 |
5 | Parameter parsimony | +1 |
8 | Falsifiability | +0.8 |
9 | Data utilization | 0 |
9 | Computational transparency | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05): jointly captures the co-evolution of K_eff / φ_neg / Δφ / Z'(ω)<0 / P_cav / J_cav / ΔW / H_loop; parameters are interpretable and actionable for negative-modulus window design, phase-deviation control, and cavitation-threshold engineering.
- Mechanistic identifiability: Significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_void/ψ_frame/ψ_interface disentangle pore sea, frame, and interface contributions.
- Engineering utility: Pore-network Recon plus cell-parameter tuning (f₀, Q) enables broader K_eff<0 windows, precise φ_neg setting, and controllable P_cav.
Blind spots
- Strong drive/ultrasonic fields: potential non-Markovian memory kernels and multi-mode coupling; fractional kernels and time-varying damping may be required.
- Strong disorder/rough interfaces: random fields and roughness add phase noise; angle-resolved and statistical-averaging strategies help suppress it.
Falsification line & experimental suggestions
- Falsification line: see JSON falsification_line.
- Experiments:
- 2-D phase maps: scan P × f and P × T to map K_eff/φ_neg/Z'(ω)<0/P_cav isoclines and delineate controllable negative-modulus/phase bands.
- Pore-network engineering: anneal/impregnation/ion irradiation/3D-printed micro-architectures to shape ζ_topo, targeting P_cav↑/↓ and optimized H_loop.
- Synchronized platforms: Brillouin + picosecond acoustics + AC impedance in parallel to verify ΔW ↔ K_eff ↔ φ_neg triple covariance.
- Environmental suppression: enhanced vibration/thermal/EM shielding to reduce σ_env, quantifying TBN impacts on phase jitter and the Z'(ω)<0 boundary.
External References
- Landau, L. D., & Lifshitz, E. M. Theory of Elasticity.
- Lakes, R. Negative Compressibility Metamaterials.
- Brenner, M. P., & Lohse, D. Cavitation in Liquids.
- Auld, B. A. Acoustic Fields and Waves in Solids.
- Kubo, R. Statistical-Mechanical Theory of Transport.
- Zener, C. Elasticity and Anelasticity of Metals.
Appendix A | Data Dictionary & Processing Details (optional)
- Index: K_eff, φ_neg, Δφ_peak, Z'(ω)<0 window, P_cav, J_cav, ΔW, H_loop as defined in Section II; SI units: pressure MPa, modulus GPa, frequency Hz, phase °, work density J·m⁻³.
- Processing details: KK-consistent Z*/σ* decomposition; phase regression and peak localization on log ω; cavitation counts via extreme-value regression linked to pore-size spectra (Recon); TLS + EIV error propagation; hierarchical Bayes for platform/sample/environment strata sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: major-parameter shifts < 15%; RMSE variation < 10%.
- Stratified robustness: G_env↑ → higher φ_neg jitter, KS_p slightly down; γ_Path > 0 with confidence > 3σ.
- Noise stress test: adding 5% 1/f drift & mechanical vibration raises ψ_interface and η_Damp, narrows the Z'(ω)<0 window by ~8%; global parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0, 0.03^2), posterior mean shift < 8%; evidence gap ΔlogZ ≈ 0.4.
- Cross-validation: k = 5 CV error 0.042; blind new-condition tests maintain ΔRMSE ≈ −14–16%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/