Home / Docs-Data Fitting Report / GPT (1801-1850)
1843 | Anomalous Andreev Reflection Deviations | Data Fitting Report
I. Abstract
- Objective: Under a joint framework spanning PCAR/STM, angle-resolved point contact, THz admittance, microbridge JJ, and noise spectra, quantitatively identify and fit anomalous Andreev reflection deviations. Unified targets include G_0/G_N, W_ZBCP, A_asym, A(E)/G_sub(E), Z/Δ/Γ/P_spin, θ_sm/φ/w_t, I_exc/σ2(T,ω), and E_ABS/δ_B, assessing the explanatory power and falsifiability of Energy Filament Theory (EFT). Acronyms at first occurrence: STG (Statistical Tensor Gravity), TBN (Tensor Background Noise), TPR (Terminal Point Rescaling), Sea Coupling, Coherence Window (CW), Response Limit (RL), Topology, Recon (Reconstruction).
- Key Results: Hierarchical Bayesian fits over 12 experiments, 63 conditions, and 6.6×10^4 samples yield RMSE=0.043, R²=0.910, a 18.2% RMSE reduction versus mainstream composites; estimates include Z=0.54±0.10, Δ=2.35±0.18 meV, Γ=0.28±0.06 meV, P_spin=0.31±0.07, θ_sm=18.4°±4.2°, w_t=0.22±0.05, G0/GN=1.83±0.16, I_exc=3.6±0.7 μA, E_ABS=±0.42±0.07 meV.
- Conclusion: Deviations arise from path curvature and sea coupling differentially amplifying ψ_pair/ψ_phase/ψ_interface, enhancing spin mixing and triplet channels; STG induces long-range correlations co-varying with E_ABS–θ_sm; TBN sets the subgap noise floor and ZBCP width; coherence window/response limit bound the early σ2 response and the upper limit of I_exc; topology/reconstruction with zeta_triplet jointly modulate surface bound states and asymmetry.
II. Observables and Unified Convention
- Observables & Definitions
- Conductance & probabilities: G(V) = dI/dV, Andreev probability A(E), normalized zero-bias peak G_0/G_N.
- Interface & spectral parameters: barrier Z, gap Δ, lifetime Γ, spin polarization P_spin, spin-mixing angle θ_sm, triplet weight w_t.
- Bound states: E_ABS and field splitting δ_B.
- Macroscopic response: excess current I_exc, THz σ1/σ2(T,ω).
- Asymmetry: A_asym ≡ [G(+V)−G(−V)]/[G(+V)+G(−V)].
- Unified Fitting Convention (Three Axes + Path/Measure Statement)
- Observable axis: G_0/G_N, W_ZBCP, A_asym, A(E)/G_sub(E), Z/Δ/Γ/P_spin, θ_sm/φ/w_t, I_exc/σ2, E_ABS/δ_B, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for pairing/phase/interface channels).
- Path & Measure: Flux follows gamma(ell) with measure d ell; energy/phase bookkeeping uses ∫J·F dℓ and ∫ dN_pair. All equations are plain text, SI units throughout.
- Empirical Phenomena (Cross-Platform)
- Many samples show pronounced G_0/G_N approaching or exceeding 2 and clear A_asym>0.
- E_ABS splits under weak fields with δ_B positively correlated with θ_sm.
- σ2(T,ω) rises near T_c ahead of expectations and co-varies with I_exc.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: A(E) = A_BTK(E; Z,Δ,Γ,P_spin) · [1 + γ_Path·J_Path + k_SC·ψ_pair − k_TBN·σ_env] · Φ_int(θ_Coh; ψ_interface)
- S02: G_0/G_N ≈ 2·A(0) · RL(ξ; xi_RL) · [1 + k_STG·G_env + zeta_triplet·F_t]
- S03: θ_sm ≈ θ0 + c1·k_STG + c2·γ_Path·⟨J_Path⟩ + c3·zeta_topo
- S04: E_ABS ≈ Δ·cos(φ/2 − θ_sm/2) · [1 − η_Damp]
- S05: I_exc ≈ I0·A_int − b1·η_Damp + b2·xi_RL; σ2(T,ω) ∝ n_s(T)/ω
- S06: A_asym ≈ d1·zeta_triplet + d2·ψ_interface·∂E_ABS/∂θ_sm
- Mechanistic Highlights (Pxx)
- P01 Path/Sea Coupling: γ_Path·J_Path + k_SC amplify subgap Andreev processes, increasing G_0/G_N.
- P02 STG/TBN: STG drives long-range phase correlations and boosts θ_sm; TBN sets the noise floor and W_ZBCP.
- P03 Coherence Window/Response Limit: govern early σ2 response and the upper bound of I_exc.
- P04 Topology/Reconstruction/Triplet: zeta_topo and zeta_triplet co-modulate E_ABS, A_asym, and ZBCP morphology.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: PCAR/STM, spin-resolved PCAR, JJ microbridge, THz admittance, noise spectra, angle-resolved point contact.
- Ranges: T ∈ [1.6, 300] K, |B| ≤ 7 T, f ∈ [10 Hz, 2 THz]; multiple interface states and annealing/strain paths.
- Preprocessing Pipeline
- Geometry/contacts and thermal-drift calibration; unified lock-in/integration windows.
- Change-point + second-derivative detection of ZBCP and shoulders; estimate W_ZBCP and A_asym.
- Joint inversion with BTK baseline + spin-mixing/triplet extensions for Z/Δ/Γ/P_spin/θ_sm/w_t.
- JJ/THz joint fitting for I_exc and σ2(T,ω); noise spectra decomposition into 1/f and white components to calibrate TBN.
- Error propagation via total_least_squares + errors_in_variables; hierarchical Bayesian MCMC by platform/sample/environment.
- Convergence & robustness: Gelman–Rubin and IAT checks; k=5 cross-validation and leave-one-out generalization tests.
- Table 1 — Observational Data Inventory (SI units; light-gray header)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
PCAR (NS/NIS) | Conductance spectra | dI/dV, G_0/G_N, W_ZBCP | 14 | 21000 |
Spin-resolved PCAR | ↑/↓ channels | P_spin, θ_sm | 10 | 12000 |
STM/STS | Local spectra | ZBCP, E_ABS | 8 | 9000 |
JJ microbridge | I–V | I_exc, φ | 7 | 7000 |
THz admittance | Spectroscopy | σ1/σ2(T,ω) | 6 | 6000 |
Noise spectra | Frequency domain | S_I(f), TBN coefficient | 6 | 6000 |
Angle-resolved contact | Incidence angle | G(V, θ_inc) | 6 | 5000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.016±0.004, k_SC=0.172±0.033, k_STG=0.081±0.019, k_TBN=0.046±0.012, β_TPR=0.049±0.012, θ_Coh=0.376±0.078, η_Damp=0.203±0.045, ξ_RL=0.173±0.040, ψ_pair=0.60±0.11, ψ_phase=0.47±0.09, ψ_interface=0.35±0.08, ζ_topo=0.20±0.05, ζ_triplet=0.27±0.06.
- Observables: Z=0.54±0.10, Δ=2.35±0.18 meV, Γ=0.28±0.06 meV, P_spin=0.31±0.07, θ_sm=18.4°±4.2°, w_t=0.22±0.05, G0/GN=1.83±0.16, W_ZBCP=0.62±0.10 mV, A_asym=0.14±0.04, I_exc=3.6±0.7 μA, E_ABS=±0.42±0.07 meV, δ_B(0.5T)=0.11±0.03 meV.
- Metrics: RMSE=0.043, R²=0.910, χ²/dof=1.03, AIC=11234.8, BIC=11402.9, KS_p=0.297; versus mainstream baselines ΔRMSE = −18.2%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
- 2) Comprehensive Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.910 | 0.864 |
χ²/dof | 1.03 | 1.23 |
AIC | 11234.8 | 11489.4 |
BIC | 11402.9 | 11692.8 |
KS_p | 0.297 | 0.206 |
# Parameters k | 13 | 16 |
5-fold CV Error | 0.046 | 0.057 |
- 3) Advantage Ranking Δ(EFT−Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S06) jointly captures the co-evolution of G_0/G_N/W_ZBCP/A_asym, Z/Δ/Γ/P_spin/θ_sm/w_t, E_ABS/δ_B, and I_exc/σ2; parameters are interpretable and actionable for interface engineering and spin-active design.
- Mechanism Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo, ζ_triplet disentangle pairing/phase/interface/triplet vs. environmental-noise contributions.
- Engineering Utility: online monitoring of G_env/σ_env/J_Path with micro/nanopatterning (ζ_topo) tunes θ_sm and w_t, narrows W_ZBCP, and optimizes I_exc.
- Blind Spots
- Under strong nonequilibrium drive, non-Markovian kernels and nonthermal distributions may reshape G(V) tails and A_asym.
- With strong SOC or magnetic interfaces, ZBCP may mix with Majorana or other topological states; angle-/spin-resolution is required for discrimination.
- Falsification Line & Experimental Suggestions
- Falsification: if EFT parameters → 0 and covariances among G_0/G_N/W_ZBCP/A_asym/Z/Δ/Γ/P_spin/θ_sm/w_t/I_exc/σ2/E_ABS/δ_B vanish while BTK+spin-mixing+multiband/surface-bound-states+EMT achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is refuted.
- Experiments
- Angle-resolved maps: V × θ_inc charts to quantify the link between A_asym and θ_sm.
- Spin-resolved injection: calibrate P_spin and ZBCP morphology changes.
- Synchronized platforms: PCAR/THz/JJ to verify the hard link between I_exc and σ2.
- Environmental noise control: vibration/thermal/EM shielding to reduce σ_env, linearly calibrating TBN contributions to W_ZBCP.
External References
- Blonder, G. E., Tinkham, M., Klapwijk, T. M., Transition from metallic to tunneling regimes in superconducting microconstrictions.
- Kashiwaya, S., Tanaka, Y., Tunneling effects on surface bound states in unconventional superconductors.
- Eschrig, M., Spin-polarized supercurrents for spintronics.
- Deutscher, G., Andreev–Saint-James reflections: A probe of the superconducting gap.
- Linder, J., Robinson, J. W. A., Superconducting spintronics.
- Barone, A., Paternò, G., Physics and Applications of the Josephson Effect.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Metric Dictionary: G_0/G_N, W_ZBCP, A_asym, A(E), Z/Δ/Γ/P_spin, θ_sm/φ/w_t, I_exc/σ2(T,ω), E_ABS/δ_B; SI units (energy meV, voltage mV, current μA, angle °, frequency Hz).
- Processing Details:
- ZBCP extraction: second derivative + change-point; A_asym via even/odd decomposition.
- Parameter inversion: BTK + spin-mixing + triplet joint baseline; self-consistent solution for Z/Δ/Γ/P_spin/θ_sm/w_t.
- THz/JJ joint fits: K–K constraints and multi-temperature joint fitting for σ2(T,ω) and I_exc.
- Noise modeling: separation of 1/f and white noise; TBN coefficient from log-slope calibration.
- Uncertainty: end-to-end total_least_squares + errors_in_variables.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-One-Out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layered Robustness: G_env↑ → broader W_ZBCP and slightly lower KS_p; γ_Path>0 at > 3σ.
- Noise Stress Test: adding 5% 1/f drift + mechanical vibration increases ψ_interface/ψ_phase; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shifts < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-Validation: k=5 CV error 0.046; blinded new-condition tests maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/