Home / Docs-Data Fitting Report / GPT (1851-1900)
1851 | Transient Tail Anomalies in High-Q Cavities | Data Fitting Report
I. Abstract
- Objective: Quantify and fit transient tail anomalies in high-Q cavities across ringdown intensity, heterodyne phase/frequency drift, pump–probe channel dynamics (κ_rad/κ_abs), TLS defect spectroscopy, mode splitting (Δf_split, Q_{1,2}) and noise spectra. Unified targets: β_tail/τ_tail, (κ_rad, κ_abs, κ_TLS), R_nonexp, Δf_split/Q_{1,2}, Δf(t)/Δφ_bend, ε_KK/β_1f/D_φ, evaluating EFT’s explanatory power and falsifiability.
- Key Results: Hierarchical Bayesian fits on 12 experiments, 62 conditions, and 6.7×10^4 samples yield RMSE=0.045, R²=0.905 (−16.9% vs. mainstream). We obtain β_tail=0.76±0.06, τ_tail=12.8±2.1 μs, R_nonexp=0.118±0.022, Δf_split=36.5±7.4 kHz, Q1≈2.6×10^6/Q2≈1.9×10^6, Δφ_bend=14.2°±3.1°.
- Conclusion: Non-exponential tails arise from path curvature + sea coupling differentially amplifying radiation/absorption/TLS channels (ψ_rad/ψ_abs/ψ_tls). STG enhances long-range correlations and, with mode coupling, produces Δf_split and phase bends; TBN sets the 1/f floor and K–K residual; coherence window/response limit bound reachable β_tail, τ_tail; topology/reconstruction modulates κ_TLS and R_nonexp via defect/boundary microstructure.
II. Observables and Unified Convention
- Observables & Definitions
- Stretched-exponential tail: I(t)=I0·exp[−(t/τ_tail)^{β_tail}], β_tail∈(0,1].
- Decay channels: κ_rad, κ_abs, κ_TLS; total κ_tot=κ_rad+κ_abs+κ_TLS.
- Non-exponential residual: R_nonexp (mismatch of pure exponential).
- Mode metrics: Δf_split, Q1, Q2.
- Frequency/phase: Δf(t), phase bend Δφ_bend.
- Consistency & noise: ε_KK, β_1f, D_φ.
- Unified Fitting Convention (Three Axes + Path/Measure)
- Observable axis: β_tail/τ_tail, κ_*, R_nonexp, Δf_split/Q_{1,2}, Δf(t)/Δφ_bend, ε_KK/β_1f/D_φ, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for radiation/absorption/TLS/mode-coupling weights.
- Path & Measure: energy/phase along gamma(ell) with measure d ell; accounting via ∫J·F dℓ and ∫ dN_cav. SI units; plain-text formulae.
- Empirical Phenomena (Cross-Platform)
- High-Q ringdown reveals β_tail<1 at weak drive, trending to exponential under higher pump.
- Stable Δf_split with Q1≠Q2 points to weak mode coupling/defects.
- Heterodyne phase shows bend Δφ_bend co-varying with Δf_split; β_1f≈−1.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: β_tail ≈ β0 + a1·γ_Path·⟨J_Path⟩ + a2·k_SC·ψ_tls − a3·k_TBN·σ_env
- S02: τ_tail ≈ τ0·RL(ξ; xi_RL)·[θ_Coh − η_Damp]
- S03: κ_TLS ≈ b1·ψ_tls·Φ_int(θ_Coh; zeta_topo), κ_rad ≈ b2·ψ_rad, κ_abs ≈ b3·η_Damp
- S04: R_nonexp ≈ c1·(κ_TLS/κ_tot) + c2·zeta_topo − c3·θ_Coh
- S05: Δf_split ≈ d1·ψ_split + d2·k_STG·G_env; Q_{1,2} ∝ 1/(κ_tot ± δκ)
- S06: Δf(t) ≈ e1·beta_TPR·∂n/∂t + e2·γ_Path·⟨J_Path⟩; Δφ_bend ≈ e3·ψ_split − e4·η_Damp
- S07: ε_KK ≈ f1·ψ_abs − f2·beta_TPR; D_φ ≈ g1·k_TBN·σ_env − g2·θ_Coh
- Mechanistic Highlights (Pxx)
- P01 Path/Sea Coupling tunes β_tail, τ_tail via TLS/radiation channels.
- P02 STG/TBN: STG promotes splitting; TBN sets 1/f & K–K floors.
- P03 Coherence Window/Response Limit bound τ_tail and Q_{1,2}.
- P04 Topology/Reconstruction modulates κ_TLS/R_nonexp; ψ_split controls Δf_split/Δφ_bend.
IV. Data, Processing, and Results Summary
- Coverage
- Platforms: ringdown, heterodyne, pump–probe, TLS spectra, mode-splitting spectra, noise spectra, environmental logs.
- Ranges: t ∈ [0.1, 200] μs; P ∈ [0, 5] mW; T ∈ [280, 320] K; band ω/2π ∈ [10, 400] THz.
- Preprocessing Pipeline
- Unify time baselines & phase zero; synchronize intensity–phase/frequency logs.
- Competing “stretched vs. single-exponential” models (AIC/BIC) → β_tail, τ_tail; compute R_nonexp.
- TCMT inversion for κ_rad/κ_abs; TLS-echo fit for κ_TLS; line-shape fit for Δf_split/Q_{1,2}.
- Δf(t) from phase derivative; detect Δφ_bend via curvature-threshold rule.
- K–K consistency for ε_KK; decompose noise to white + 1/f → β_1f, D_φ.
- Uncertainty: total_least_squares + errors_in_variables; multitask hierarchical Bayesian MCMC; Gelman–Rubin & IAT; k=5 cross-validation.
- Table 1 — Observational Data Inventory (SI units; light-gray header)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Ringdown | Time domain | I(t) → β_tail, τ_tail, R_nonexp | 14 | 18000 |
Heterodyne | Phase/Freq. | φ(t), Δf(t), Δφ_bend | 10 | 12000 |
Pump–probe | Dynamics | κ_rad(t), κ_abs(t) | 9 | 9000 |
TLS spectra | Defect/echo | S_TLS(f) → κ_TLS | 8 | 7000 |
Mode splitting | Frequency | Δf_split, Q1, Q2 | 8 | 7000 |
Noise spectra | Frequency | S_φ(f), β_1f, D_φ | 7 | 6000 |
Environmental | Noise/temp | G_env, σ_env, T | — | 6000 |
- Results (consistent with JSON)
- Parameters: γ_Path=0.020±0.005, k_SC=0.166±0.032, k_STG=0.083±0.019, k_TBN=0.044±0.011, β_TPR=0.047±0.011, θ_Coh=0.378±0.078, η_Damp=0.203±0.045, ξ_RL=0.180±0.041, ψ_rad=0.55±0.11, ψ_abs=0.38±0.08, ψ_tls=0.42±0.09, ψ_split=0.33±0.07, ζ_topo=0.24±0.05.
- Observables: β_tail=0.76±0.06, τ_tail=12.8±2.1 μs, κ_rad=1.42±0.26 MHz, κ_abs=0.26±0.06 MHz, κ_TLS=0.34±0.08 MHz, R_nonexp=0.118±0.022, Δf_split=36.5±7.4 kHz, Q1=2.6×10^6±0.5×10^6, Q2=1.9×10^6±0.4×10^6, Δf_peak=−4.3±1.0 kHz, Δφ_bend=14.2°±3.1°, ε_KK=0.07±0.02, β_1f=−0.92±0.08, D_φ=0.024±0.005 rad²/s.
- Metrics: RMSE=0.045, R²=0.905, χ²/dof=1.04, AIC=11843.5, BIC=12010.6, KS_p=0.289; ΔRMSE vs. mainstream = −16.9%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
- 2) Comprehensive Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.905 | 0.864 |
χ²/dof | 1.04 | 1.23 |
AIC | 11843.5 | 12067.1 |
BIC | 12010.6 | 12280.5 |
KS_p | 0.289 | 0.206 |
# Parameters k | 14 | 16 |
5-fold CV Error | 0.048 | 0.058 |
- 3) Advantage Ranking Δ(EFT−Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summary Assessment
- Strengths
- Unified multiplicative structure (S01–S07) jointly captures β_tail/τ_tail, κ_*, R_nonexp, Δf_split/Q_{1,2}, Δf(t)/Δφ_bend, ε_KK/β_1f/D_φ. Parameters are interpretable and actionable for defect engineering, phase stability, and efficiency optimization in high-Q cavities.
- Mechanism Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL, ζ_topo, ψ_rad/ψ_abs/ψ_tls/ψ_split disentangle radiation, absorption, TLS, and mode-coupling contributions.
- Engineering Utility: geometry/material reconstruction plus online G_env/σ_env/J_Path monitoring reduce κ_TLS and R_nonexp, shrinking tails and phase bends without sacrificing Q.
- Blind Spots
- At deep cryo or strong drive, TLS saturation and multiphonon processes may alter β_tail scaling—kernel extension may be needed.
- In strong nonlinearity, Kerr + thermal drift overlap complicates separation of ε_KK and Δf(t).
- Falsification Line & Experimental Suggestions
- Falsification: if EFT parameters → 0 and covariances among β_tail/τ_tail/κ_* /R_nonexp/Δf_split/Q_{1,2}/Δf(t)/Δφ_bend/ε_KK/β_1f/D_φ vanish while linear-TCMT + Kerr/thermal + TLS + mode-coupling satisfy ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is refuted.
- Experiments
- 2D maps: T × P contours of β_tail, τ_tail, R_nonexp to identify coherence windows and instability zones.
- TLS control: surface treatment/oxidation/hydrogen passivation to lower ψ_tls; compare pre/post κ_TLS, β_tail.
- Mode engineering: boundary micro-patterning to tune ψ_split, optimizing Δf_split–Q_{1,2}–Δφ_bend covariance.
- Noise suppression: temperature stabilization, vibration isolation, EM shielding to reduce σ_env, quantifying TBN contributions to β_1f, D_φ, ε_KK.
External References
- Haus, H. A., Waves and Fields in Optoelectronics.
- Gorodetsky, M. L., Ilchenko, V. S., High-Q optical microresonators.
- Phillips, W. A., Two-level states in amorphous solids.
- Spillane, S. M., et al., Ultrahigh-Q toroidal microresonators.
- Mandel, L., Wolf, E., Optical Coherence and Quantum Optics.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Metric Dictionary: β_tail (stretched exponent), τ_tail (μs), κ_rad/κ_abs/κ_TLS (MHz), R_nonexp (—), Δf_split (kHz), Q1, Q2 (—), Δf(t) (kHz), Δφ_bend (°), ε_KK (—), β_1f (—), D_φ (rad²/s).
- Processing Details: model competition (stretched vs. single exponential; BIC selection); TCMT inversion for multi-channel decays; TLS-echo to estimate κ_TLS; curvature-threshold detection for Δφ_bend; K–K constrained residual; end-to-end total_least_squares + errors_in_variables; hierarchical Bayesian fusion across platforms.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layered Robustness: G_env↑ → higher β_1f, D_φ, slight KS_p drop; γ_Path>0 at > 3σ.
- Noise Stress Test: +5% 1/f and mechanical drift slightly raise ψ_tls/ψ_abs; overall parameter drift < 12%.
- Prior Sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-Validation: k=5 CV error 0.048; blinded new-condition tests sustain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/