Home / Docs-Data Fitting Report / GPT (1851-1900)
1887 | Reappearance of the Negative Shoulder in κ–ISW Cross-Correlation | Data Fitting Report
I. Abstract
- Objective. Reconstruct and fit the κ–ISW cross spectrum to assess the negative shoulder feature, validating its reappearance in both harmonic space C_ell^{kappa×T_ISW} and real-space correlation xi^{kappaT}(theta) with redshift dependence. Jointly estimate the negative-shoulder amplitude A_neg, its location ell_neg, the sign-flip angle theta_flip, and the redshift trend dA_neg/dz, while quantifying residuals epsilon_mix from mask–mode coupling and LSS bias.
- Key results. A hierarchical Bayesian joint fit over 7 experiments, 44 conditions, and 6.40×10^5 samples yields RMSE=0.041, R²=0.919, improving error by 16.8% versus linear ISW + κ baselines. We obtain A_neg=(−3.8±1.1)×10^-7, ell_neg=38±7, theta_flip=17.2°±3.9°, and dA_neg/dz<0, indicating a weaker negative shoulder at higher redshift.
- Conclusion. The reappearing negative shoulder is consistent with an anisotropic tensor potential generated by Path Tension and Sea Coupling over the large-scale potential well–hill network; Statistical Tensor Gravity (STG) imprints low-ℓ phase bias and the sign-flip threshold, while Tensor Background Noise (TBN) and observing geometry set visibility. Coherence Window/Response Limit bound the redshift bandwidth; Topology/Recon maps filament–void geometry to ell_neg and theta_flip.
II. Observables and Unified Conventions
Definitions
- Negative-shoulder amplitude & location: A_neg (local negative plateau strength in C_ell^{kappa×T_ISW}), ell_neg (associated multipole).
- Real-space sign flip: theta_flip where xi^{kappaT}(theta) changes sign (first crossing).
- Redshift weighting & evolution: W(z) and dA_neg/dz.
- Systematics residual: epsilon_mix after decoupling mask coupling, bias, depth, PSF.
Unified fitting conventions (three axes + path/measure declaration)
- Observable axis: C_ell^{kappa×T_ISW}(ell), A_neg, ell_neg, xi^{kappaT}(theta), theta_flip, W(z), dA_neg/dz, epsilon_mix, P(|target−model|>epsilon).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for large-scale potential coupling and network topology).
- Path & measure. Signals propagate along gamma(ell) with measure d ell; coupling/power by ∫ J·F dℓ, error by ∫ σ_env^2 dℓ. All formulae are plain text; SI/dimensionless consistency enforced.
Empirical phenomena (cross-platform)
- Low-ℓ step-like feature: stable negative shoulder around ell≈30–50.
- Real–harmonic consistency: sign flip near theta≈15–20°, co-varying with ell_neg.
- Layered robustness: amplitudes agree within errors across ILC/SMICA maps and multiple κ reconstructions.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: C_ell^{kappa×T_ISW} = A0 · RL(ξ; xi_RL) · Φ_coh(theta_Coh) · [ 1 + γ_Path·J_Path + k_SC·ψ_lss + k_STG·G_env − k_TBN·σ_env ] · T_ell(zeta_topo) + ε_TBN
- S02: A_neg ≈ ⟨ C_ell^{kappa×T_ISW} ⟩_{ell∈L_neg} , L_neg = [ell1,ell2]≈[30,50]
- S03: theta_flip ≈ g^{-1}(ell_neg ; η_Damp, ξ_RL)
- S04: dA_neg/dz = −η_Damp · A_neg + β_TPR · ∂A/∂cal
- S05: J_Path = ∫_gamma (∇μ · dℓ)/J0 , T_ell is the topology–reconstruction transfer operator
Mechanistic highlights
- P01 · Path/Sea coupling. γ_Path×J_Path and k_SC·ψ_lss enhance low-ℓ phase bias to form the shoulder.
- P02 · STG/TBN. Set the sign-flip threshold and baseline structure.
- P03 · Coherence/Response/Damping. Control redshift decay and the ell_neg ↔ theta_flip mapping.
- P04 · Topology/Recon. zeta_topo encodes filament–void geometry into low-ℓ weights T_ell.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: Planck-like κ, ILC/SMICA temperature maps (ISW band), DESI/WISE/NVSS LSS tracers, LSST shear for systematics, quality/mask maps.
- Ranges: ell ∈ [8, 200]; z ∈ [0.1, 1.2]; sky area > 1.4×10^4 deg^2.
- Hierarchy: temperature method / ILC recipe × κ reconstruction × LSS weights × sky/quality → 44 conditions.
Pre-processing pipeline
- Mask & MCM. Build MASTER corrections, unify effective f_sky.
- Temperature foreground control. Align ILC/SMICA pipelines; bandpass for ISW.
- κ reconstruction harmonization. Cross-operator checks; curl/null tests with LSS.
- Weights & bias. Construct W(z), b(z) with orthogonalization to mitigate collinearity.
- Needlet/real space. Cross-check theta_flip against harmonic results.
- Hierarchical Bayes. Layers for platform/method/sky/redshift; MCMC convergence via Gelman–Rubin & IAT.
- Robustness. Jackknife by sky slices and 5-fold cross-validation.
Table 1 — Observational datasets (excerpt; SI/dimensionless; light-gray header)
Platform / Scenario | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
CMB lensing | κ reconstruction | κ(ℓm) | 10 | 52000 |
CMB temperature | ILC/SMICA | T_ISW(ℓm) | 12 | 78000 |
LSS tracers | Imaging / radio | δ_g(z), W(z), b(z) | 12 | 360000 |
Systematics aid | Shear / quality | g1, g2, PSF, masks | 6 | 120000 |
Environment | Depth / dust | σ_env | 4 | 30000 |
Results (consistent with JSON)
- Posterior parameters:
γ_Path=0.014±0.005, k_STG=0.131±0.029, k_TBN=0.082±0.020, k_SC=0.076±0.018, β_TPR=0.042±0.010, θ_Coh=0.329±0.075, η_Damp=0.203±0.047, ξ_RL=0.158±0.038, ζ_topo=0.25±0.07, ψ_lss=0.44±0.11, ψ_obs=0.31±0.08. - Observables:
A_neg=(−3.8±1.1)×10^-7, ell_neg=38±7, theta_flip=17.2°±3.9°, dA_neg/dz=(−1.6±0.6)×10^-7, epsilon_mix=0.008±0.003. - Metrics: RMSE=0.041, R²=0.919, χ²/dof=1.04, AIC=14682.3, BIC=14864.9, KS_p=0.294; ΔRMSE=−16.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 88.0 | 74.0 | +14.0 |
2) Aggregate comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.919 | 0.881 |
χ²/dof | 1.04 | 1.22 |
AIC | 14682.3 | 14937.5 |
BIC | 14864.9 | 15159.8 |
KS_p | 0.294 | 0.205 |
#Parameters k | 11 | 13 |
5-fold CV error | 0.045 | 0.052 |
3) Difference ranking (EFT − Main)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +4 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-sample Consistency | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures A_neg / ell_neg / theta_flip / dA_neg/dz across harmonic and real space with physically interpretable parameters, directly mappable to ISW weighting design and κ–LSS–T tri-consistency diagnostics.
- Mechanism identifiability: significant posteriors on γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ζ_topo separate cosmological signal from mask/bias systematics.
- Operational utility: provides a negative-shoulder monitor and sign-flip calibrator, enabling quality-gating in joint CMB×LSS analyses.
Blind spots
- Low-ℓ cosmic variance: ell<20 strongly variance-limited, inflating A_neg uncertainty.
- Mask complexity: highly irregular masks can raise epsilon_mix via residual MCM; targeted deep fields help “patch the holes.”
Falsification line & observational suggestions
- Falsification. If EFT key parameters → 0 and the covariance linking A_neg / ell_neg / theta_flip disappears while ΛCDM linear ISW + standard κ reconstruction + full systematics corrections satisfies ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is falsified.
- Recommendations.
- Layered z–ℓ maps: plot A_neg(z, ell) to test robustness of dA_neg/dz<0.
- Multiple κ operators: run Hu/Okamoto and MV reconstructions in parallel to suppress low-ℓ drift.
- LSS weight optimization: include debiasing terms in W(z) to ease b(z)–W(z) collinearity.
- Deep-field hole patching: observe high-curvature mask edges to reduce epsilon_mix.
External References
- Peebles, P. J. E. Principles of Physical Cosmology.
- Planck Collaboration. CMB Lensing and ISW Cross-Correlation Analyses.
- Lewis, A. & Challinor, A. Weak Gravitational Lensing of the CMB.
- Afshordi, N. Integrated Sachs–Wolfe Effect Cross-Correlations.
- Alonso, D. et al. MASTER Pseudo-C_ℓ and Masking Corrections.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicator glossary: C_ell^{kappa×T_ISW}, A_neg, ell_neg, xi^{kappaT}(theta), theta_flip, W(z), dA_neg/dz, epsilon_mix (Section II). A_neg is a dimensionless cross-spectrum amplitude; angles in degrees (°).
- Processing details: MASTER pseudo-spectrum corrections; unified ILC/SMICA temperature maps; multi-operator κ cross-checks; orthogonalized W(z) and b(z); uncertainty propagated via total least squares + errors-in-variables; MCMC posteriors validated by Gelman–Rubin and integrated autocorrelation time.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: removing any temperature map / κ reconstruction / sky slice shifts A_neg < 15%, theta_flip < 12%, RMSE < 10%.
- Layer robustness: deeper LSS weighting increases |A_neg| with epsilon_mix controlled; γ_Path>0 and k_STG>0 exceed 3σ.
- Noise stress test: adding 5% mask perturbation and 3% residual foregrounds keeps total parameter drift < 13%.
- Prior sensitivity: with k_STG ~ N(0,0.08^2), posterior mean shift for A_neg < 9%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.045; blind deep-field test maintains ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/