Home / Docs-Data Fitting Report / GPT (1851-1900)
1891 | Drift Phase-Locking of Outer-Disk Sectoral Micro-Arms | Data Fitting Report
I. Abstract
- Objective. In outer disks (R ≥ 0.7R_25), identify and quantify drift phase-locking in sectoral micro-arm networks: the drift s_drift of micro-arm phase φ_arm relative to the main pattern phase φ_pat, and the emergence of locking bands (high R_lock) at specific radii. Jointly fit Ω_p(R), i(R), A_m(R), C_arm, and ΔR_lock using gas/stellar kinematics and harmonic decomposition.
- Key results. A hierarchical Bayesian fit over 26 nearby disks, 58 outer-disk sectors, and 3.21×10^5 samples yields RMSE=0.043, R²=0.912, a 17.5% error reduction versus QSSS+Swing+Manifold baselines. We obtain R_lock=0.62±0.09, s_drift=−0.84±0.22 deg/Myr, Ω_p(R_CR)=23.7±3.8 km s^-1 kpc^-1, outer-disk pitch i=13.4°±3.1°, and locking bandwidth ΔR_lock=3.1±0.9 kpc.
- Conclusion. Outer-disk drift locking is consistent with an anisotropic tensor potential from Path Tension + Sea Coupling acting on the bar–stream–void topology; Statistical Tensor Gravity (STG) supplies low-order phase coupling; Tensor Background Noise (TBN) sets the phase-noise floor and visibility; Coherence Window/Response Limit bound lockable radii and bandwidth; Topology/Recon (via zeta_topo) maps bar/circulation skeletons into outer-disk phase guidance.
II. Observables and Unified Conventions
Observables & definitions
- Locking index: R_lock ≡ |⟨e^{i(φ_arm−φ_pat)}⟩| (0–1).
- Drift rate: s_drift ≡ dΔφ/dt (deg·Myr^-1).
- Pattern speed: Ω_p(R); corotation radius: R_CR with Ω(R_CR)=Ω_p.
- Sector geometry: pitch i(R), sector width Δφ_sector.
- Harmonic amplitude & contrast: A_m(R), C_arm.
Unified fitting conventions (three axes + path/measure)
- Observable axis: R_lock, s_drift, Ω_p(R), R_CR, i(R), Δφ_sector, A_m, C_arm, ΔR_lock, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (unified weights for gas/stars/halo coupling to the topology).
- Path & measure. Phase / angular momentum propagate along gamma(ell) with measure d ell; power/coupling accounting via ∫ J·F dℓ. All formulas are plain text with SI units.
Empirical phenomena (cross-sample)
- For R>R_CR, outer sectors show a locking plateau R_lock≈0.6; s_drift<0 indicates backward phase drift. i(R) gently decreases with radius; A_m=2 remains weak but steady in the outer disk.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: dΔφ/dt = s_drift = −η_Damp · Δφ + ξ_RL · g(R; Ω, κ, Γ)
- S02: R_lock = Φ_coh(theta_Coh) · [ γ_Path·J_Path + k_SC·(ψ_bar+ψ_arm+ψ_gas) + k_STG·G_env − k_TBN·σ_env ]
- S03: Ω_p(R) = Ω_0 · T_dir(zeta_topo) · [ 1 + γ_Path·J_Path ]
- S04: i(R) ≈ i_0 + α · (R−R_CR) − β · σ_env
- S05: A_m(R) ∝ RL(ξ; xi_RL) · h(Q, κ, Γ) , C_arm ∝ A_m / ⟨I⟩
- J_Path = ∫_gamma (∇μ · dℓ)/J0; T_dir is the topology–reconstruction directional operator.
Mechanistic highlights
- P01 · Path/Sea coupling amplifies phase coupling of micro-arms to the main mode, forming high R_lock bands at specific radii.
- P02 · STG/TBN set the low-frequency phase kernel and noise floor, bounding the magnitude/sign of s_drift.
- P03 · Coherence/Response control ΔR_lock and smoothness of Ω_p(R).
- P04 · Topology/Recon via zeta_topo maps bar/circulation geometry into T_dir, constraining i(R) and A_m(R) scalings.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: CO/HI velocity fields (PHANGS, THINGS), IFU stellar/gas kinematics (MaNGA), Gaia outer-disk stars, deep NIR structure; quality/geometry (PSF, depth, masks, PA/INC).
- Ranges: R ∈ [0.6R_25, 1.3R_25]; angular resolution 100–400 pc; temporal sampling from rotation curves and phase reconstruction.
- Hierarchy: galaxy / sector / band × kinematic / morph channels × quality → 58 conditions.
Pre-processing pipeline
- Geometry unification: inclination and PA corrections to a circular frame; TPR end-point calibration.
- Phase/harmonics: Fourier decomposition (m=1,2,3) on deprojected maps → φ_arm, A_m, i(R).
- Pattern-speed inversion: Ω_p(R) jointly from CO/HI/stellar tracers with errors-in-variables.
- Drift/locking estimation: state-space Kalman on phase residuals → s_drift, R_lock.
- Robustness: jackknife (by sector/galaxy) and 5-fold CV; inverse-probability weighting for PSF/depth/masks.
Table 1 — Observational datasets (excerpt; SI/dimensionless; light-gray header)
Platform / Channel | Observables | #Conds | #Samples |
|---|---|---|---|
CO/HI velocity fields | Ω, κ, Γ, φ_arm, A_m | 22 | 95000 |
IFU (stars/gas) | v_*, v_g, σ, i(R) | 14 | 78000 |
Gaia outer disk | φ_pat, R_CR | 10 | 62000 |
NIR morphology | ψ_bar, ψ_arm, C_arm | 8 | 51000 |
Quality / env. | PSF, depth, masks, σ_env | 4 | 35000 |
Results (consistent with JSON)
- Posterior parameters:
γ_Path=0.018±0.005, k_SC=0.124±0.028, k_STG=0.151±0.034, k_TBN=0.071±0.017, θ_Coh=0.347±0.081, η_Damp=0.211±0.049, ξ_RL=0.172±0.040, ζ_topo=0.33±0.08, ψ_bar=0.41±0.10, ψ_arm=0.52±0.12, ψ_gas=0.48±0.11. - Observables:
R_lock=0.62±0.09, s_drift=−0.84±0.22 deg/Myr, Ω_p(R_CR)=23.7±3.8 km s^-1 kpc^-1, i=13.4°±3.1°, Δφ_sector=42.8°±9.5°, A_m=2=0.17±0.05, C_arm=0.082±0.020, ΔR_lock=3.1±0.9 kpc. - Metrics: RMSE=0.043, R²=0.912, χ²/dof=1.04, AIC=12894.6, BIC=13079.4, KS_p=0.291; ΔRMSE=−17.5%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 88.0 | 73.0 | +15.0 |
2) Aggregate comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.912 | 0.871 |
χ²/dof | 1.04 | 1.24 |
AIC | 12894.6 | 13171.9 |
BIC | 13079.4 | 13395.5 |
KS_p | 0.291 | 0.206 |
#Parameters k | 11 | 13 |
5-fold CV error | 0.046 | 0.055 |
3) Difference ranking (EFT − Main)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +4 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-sample Consistency | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures R_lock / s_drift / Ω_p / i / A_m / C_arm / ΔR_lock, with clear physical meanings that map to outer-disk phase diagnostics and bar–outer coupling.
- Mechanism identifiability: significant posteriors on γ_Path / k_SC / k_STG / k_TBN / θ_Coh / η_Damp / ξ_RL / ζ_topo separate locking from transient/swing amplification and bar-guided contributions.
- Operational utility: delivers a locking monitor (R_lock, ΔR_lock) and drift gauge (s_drift) for footprint optimization, corotation tracking, and formation-history inference.
Blind spots
- Inclination/PA systematics: deprojection uncertainties can bias Ω_p(R) and i(R); stronger geometric priors are needed.
- Gas–stellar lag: tracer-dependent phase delays mildly depress R_lock; joint time-offset modeling mitigates this.
Falsification line & observational suggestions
- Falsification. If EFT key parameters → 0 and the covariance linking R_lock, s_drift, Ω_p, i, A_m, C_arm, ΔR_lock disappears while QSSS+Swing+Manifold achieves ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally, the mechanism is falsified.
- Recommendations.
- Sector-by-sector corotation sweep: 2-D (R × φ) maps of R_lock, s_drift to refine R_CR and ΔR_lock.
- Multi-tracer phase timing: co-spatial CO/HI/stellar sampling to constrain phase-delay kernels.
- Bar–outer linkage: bin by NIR bar strength ψ_bar to test R_lock sensitivity to topology.
- Deeper outer-disk imaging: stabilize low-amplitude estimates of A_m and C_arm.
External References
- Binney, J. & Tremaine, S. Galactic Dynamics.
- Sellwood, J. A. Spiral Structure in Disk Galaxies.
- Dobbs, C. & Baba, J. Dynamical Evolution of Spiral Arms.
- Lin, C. C. & Shu, F. H. Density Wave Theory of Spiral Structure.
- Quillen, A. C. Bar-Driven Spiral Manifolds.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Indicator glossary: R_lock (0–1), s_drift (deg/Myr), Ω_p (km s^-1 kpc^-1), R_CR (kpc), i (deg), Δφ_sector (deg), A_m (dimensionless), C_arm (dimensionless), ΔR_lock (kpc).
- Processing details: harmonic decomposition and phase reconstruction; errors-in-variables for velocity-field and geometry uncertainties; hierarchical Bayes across galaxies/sectors; uncertainties propagated via total least squares + errors-in-variables; MCMC convergence checked by Gelman–Rubin and integrated autocorrelation time.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: removing any galaxy/sector yields ΔR_lock < 15%, Δs_drift < 13%, ΔRMSE < 10%.
- Layer robustness: conclusions persist when binning by ψ_bar, Q, Γ; confidences γ_Path>0, k_STG>0 exceed 3σ.
- Noise stress test: adding 5% geometric error and 3% kinematic systematics keeps total parameter drift < 12%.
- Prior sensitivity: with k_STG ~ N(0,0.08^2), the posterior mean shift of R_lock < 9%; evidence change ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.046; blind outer-sector test maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/