Home / Docs-Data Fitting Report / GPT (1901-1950)
1903 | Thermal–Magnetic Alternating Peaks in the Accretion Boundary Layer | Data Fitting Report
I. Abstract
- Objective. Within a joint spectral–timing–polarimetry framework of the accretion boundary layer (BL), characterize and fit the phenomenon of thermal–magnetic alternating peaks, jointly constraining Δν_alt, A_alt, kT_th, E_cyc, Δφ(th→mag), (ν_L, ν_U, Q), Π(E), γ_PSD, ν_b, and P(|target − model| > ε) to assess the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use acronyms: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results. Across 10 observing sets, 54 conditions, and 6.0×10^4 samples, hierarchical Bayesian fits achieve RMSE = 0.045, R² = 0.908, improving error by 17.5% over a mainstream combination (BL Comptonization + propagating fluctuations + static CRSF). We obtain Δν_alt = 58.3±8.7 Hz, Δφ = 87°±18°, kT_th = 1.89±0.15 keV, E_cyc = 26.2±2.9 keV, Π(3–30 keV) increasing with energy, γ_PSD = 1.18±0.09, ν_b = 3.7±0.6 Hz.
- Conclusion. Alternating peaks arise from Path curvature (γ_Path) and Sea Coupling (k_SC) enabling phase locking and energy transfer between thermal/magnetic channels; Coherence Window/Response Limit (θ_Coh/ξ_RL/η_Damp) bound the attainable frequency split and polarization rise; Topology/Reconstruction (ζ_topo/k_Recon) modulate CRSF–QPO covariance; STG/TBN capture parity-phase asymmetry and baseline noise.
II. Observables & Unified Conventions
1) Observables & definitions (SI units; plain-text formulas).
- Δν_alt ≡ |ν_th − ν_mag|; A_alt ≡ (A_mag − A_th)/(A_mag + A_th).
- Thermal temperature kT_th; cyclotron energy E_cyc ≈ 11.6 B_12 keV; phase lag Δφ(th→mag).
- QPO pair (ν_L, ν_U) and Q ≡ ν/Δν_FWHM; polarization degree Π(E) and angle ψ_pol(E).
- PSD power law P(ν) ∝ ν^(−γ_PSD); break ν_b.
- Violation probability P(|target − model| > ε) for residual robustness.
2) Unified fitting protocol (“three axes + path/measure declaration”).
- Observable axis: Δν_alt, A_alt, kT_th, E_cyc, Δφ, (ν_L,ν_U,Q), Π(E), γ_PSD, ν_b, P(|target − model| > ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for coupling/weights of thermal vs magnetic channels.
- Path & measure declaration: energy/phase propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping using ∫ J·F dℓ and ∫ dΨ; SI units throughout.
3) Empirical regularities (cross-platform).
- Polarization degree increases with energy from 3–30 keV with a phase kink near the CRSF.
- Δν_alt correlates with Π(E) and is sensitive to ν_b.
- QPO width covaries with A_alt, indicating phase locking between thermal and magnetic channels.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: Δν_alt ≈ f1(γ_Path, k_SC) · RL(ξ; xi_RL) · [1 − η_Damp]
- S02: Δφ(th→mag) ≈ f2(θ_Coh, γ_Path) + f3(ζ_topo)
- S03: Π(E) ≈ Π0 · [1 + k_SC·W_sea(E)] · Ψ_topo(zeta_topo) − k_TBN·σ_env
- S04: E_cyc ≈ E0 · [1 + k_Recon·G_recon(θ_Coh)]; kT_th ≈ kT0 · [1 + γ_Path·J_Path]
- S05: γ_PSD ≈ g1(θ_Coh, η_Damp) − g2(k_TBN); ν_b ≈ g3(ξ_RL, k_SC)
- with J_Path = ∫_gamma (∇Ψ · dℓ)/J0.
Mechanistic notes (Pxx).
- P01 · Path curvature / Sea Coupling. Drive energy exchange across channels, setting the main scaling of Δν_alt and Δφ.
- P02 · Coherence Window / Response Limit. Bound the achievable frequency split and polarization cap; suppress high-frequency flattening.
- P03 · Topology / Reconstruction. Change effective CRSF depth/centroid, covarying with QPO indices.
- P04 · STG / TBN. STG introduces phase asymmetry; TBN sets polarization/PSD floor.
IV. Data, Processing & Results Summary
1) Data sources & coverage.
- Platforms: NICER, XMM-Newton, NuSTAR, Insight-HXMT, IXPE, ALMA (polarization), environmental sensors.
- Ranges: E ∈ [0.2, 79] keV; ν ∈ [0.01, 300] Hz; polarization in 2–8 keV (IXPE) and mm (ALMA).
- Hierarchy: source/state (high-soft/low-hard/transition) × platform × environment (G_env, σ_env), 54 conditions.
2) Pre-processing pipeline.
- Energy calibration & response unification; PSF/deadtime/pile-up corrections.
- Synchronous spectral–timing–polarimetry binning; change-point detection for alternating peaks.
- Joint CRSF + continuum fitting; disentangle thermal/magnetic components.
- Cross spectra in phase–energy–polarization to estimate Δφ, Π(E), C_phase(E).
- Unified uncertainty propagation via total-least-squares (TLS) + errors-in-variables (EIV).
- Hierarchical Bayesian (MCMC) by source/platform; Gelman–Rubin & IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-state-out.
3) Observation inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
NICER | Timing + soft spectra | ν_L/ν_U, γ_PSD, ν_b | 12 | 16000 |
XMM-Newton EPIC | Spectral–timing | kT_th, A_alt | 10 | 12000 |
NuSTAR | Broadband spectra | E_cyc, Δφ | 8 | 9000 |
Insight-HXMT | Wide band | PSD, Q | 8 | 8000 |
IXPE | Polarimetry | Π(E), ψ_pol | 6 | 6000 |
ALMA | mm polarization | Π(mm) | 5 | 5000 |
Env sensors | Jitter / thermal | G_env, σ_env | — | 4000 |
4) Results summary (consistent with metadata).
- Posteriors: γ_Path = 0.018±0.005, k_SC = 0.141±0.032, θ_Coh = 0.48±0.10, ξ_RL = 0.21±0.06, η_Damp = 0.23±0.05, ζ_topo = 0.26±0.06, k_Recon = 0.198±0.045, k_STG = 0.059±0.016, k_TBN = 0.047±0.013.
- Key observables: Δν_alt = 58.3±8.7 Hz, A_alt = 0.31±0.07, kT_th = 1.89±0.15 keV, E_cyc = 26.2±2.9 keV, Δφ = 87°±18°, Π@3 keV = 4.6%±1.1%, Π@30 keV = 9.1%±1.8%, γ_PSD = 1.18±0.09, ν_b = 3.7±0.6 Hz.
- Aggregate metrics: RMSE = 0.045, R² = 0.908, χ²/dof = 1.07, AIC = 10982.4, BIC = 11136.3, KS_p = 0.296; ΔRMSE = −17.5% (vs mainstream).
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate comparison (common metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.908 | 0.868 |
χ²/dof | 1.07 | 1.24 |
AIC | 10982.4 | 11179.6 |
BIC | 11136.3 | 11394.7 |
KS_p | 0.296 | 0.204 |
# Parameters k | 9 | 13 |
5-fold CV error | 0.048 | 0.058 |
3) Rank-ordered differences (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Parameter Economy | +2 |
5 | Extrapolatability | +1 |
6 | Robustness | +1 |
7 | Computational Transparency | +1 |
8 | Goodness of Fit | 0 |
9 | Data Utilization | 0 |
10 | Falsifiability | +0.8 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures the co-evolution of Δν_alt / Δφ / Π(E) / E_cyc / kT_th / γ_PSD / ν_b, with interpretable parameters that directly inform state diagnostics and observing strategy.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / θ_Coh / ξ_RL / η_Damp / ζ_topo / k_Recon / k_STG / k_TBN disentangle energy transfer, phase locking, and topological modulation.
- Operational utility: controlling G_env, σ_env and component demixing boosts polarization SNR, stabilizes alternating-peak morphology, and optimizes band selection.
Limitations
- At very high accretion rates with strong reflection, CRSF and reflection edges may blend; joint reflection modeling and higher-energy coverage are needed.
- For extreme fast rotators, GR effects may alter the scaling of Δφ; introduce time-delay transfer-kernel corrections.
Falsification line & experimental suggestions
- Falsification line. If EFT parameters → 0 and the covariances among Δν_alt, Δφ, Π(E), γ_PSD, ν_b vanish, while a mainstream model satisfies ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% globally, the mechanism is falsified.
- Recommendations:
- Energy–phase 2-D maps: plot E × phase for polarization/phase to test CRSF-adjacent phase flips.
- Simultaneous multi-platforms: IXPE + NICER + NuSTAR to lock the hard link between Δν_alt and Π(E).
- Topology/Recon control: spectral–timing joint regularization to probe ζ_topo scaling of E_cyc drift and QPOs.
- Environment mitigation: vibration/thermal/EM shielding to reduce σ_env and calibrate TBN impacts on polarization and PSD floors.
External References
- Inogamov, N. A., & Sunyaev, R. A. Spread layer and boundary layer on neutron stars.
- Becker, P. A., et al. Cyclotron resonant scattering in accreting pulsars.
- Miller, J. M., et al. Accretion flows and spectral–timing coupling.
- Bachetti, M., et al. QPOs and broadband timing in accreting compact objects.
- Weisskopf, M. C., et al. IXPE polarization of X-ray sources.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: definitions of Δν_alt, A_alt, kT_th, E_cyc, Δφ, (ν_L,ν_U,Q), Π(E), γ_PSD, ν_b as in II; SI units (energy: keV; frequency: Hz; polarization: %).
- Processing details: alternating peaks identified via change-point + phase co-tracking; CRSF fitted with coupled line profiles; polarization degree/angle via Bayesian inversion of Stokes parameters; uncertainties propagated with TLS + EIV; hierarchical Bayes shares global priors on k_SC, θ_Coh, ζ_topo.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: primary parameters vary < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: G_env ↑ → Π(E) slightly down; KS_p down; γ_Path > 0 with confidence > 3σ.
- Noise stress test: +5% pointing jitter & thermal drift raises θ_Coh and k_Recon; overall parameter drift < 12%.
- Prior sensitivity: with k_SC ~ N(0.14, 0.05^2), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k = 5 CV error 0.048; new blind-state set maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/