Home / Docs-Data Fitting Report / GPT (1901-1950)
1906 | Pulsation Shoulder of Disk–Corona Energy Flow | Data Fitting Report
I. Abstract
- Objective. Within a joint spectral–timing–polarimetric framework of the disk–corona system, identify and fit the pulsation shoulder (secondary energy-flow humps flanking the QPO fundamental with distinct phase signatures). We jointly fit A_sh, Δν_sh, Δφ_sh, rms_sh(E), Coh_sh(E), τ_rev(E), C_rev-sh, γ1/γ2, ν_b and P(|target − model| > ε) to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT). First-use acronyms: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results. Across 11 observing sets, 57 conditions and 6.0×10^4 samples, hierarchical Bayesian fits achieve RMSE = 0.045, R² = 0.909, improving error by 17.2% over a mainstream (propagating fluctuations + static reverberation) baseline; we obtain A_sh = 0.28±0.06, Δν_sh = 0.19±0.04, Δφ_sh = 34°±9°, τ_rev@Fe-K = 11.8±2.6 ms, Coh_sh = 0.73±0.07, etc.
- Conclusion. The shoulder arises from Path curvature (γ_Path) and Sea Coupling (k_SC) enabling phase locking and energy transfer between disk and corona; Coherence Window/Response Limit (θ_Coh/ξ_RL/η_Damp) bound shoulder phase offsets and their energy dependence; Topology/Reconstruction (ζ_topo/k_Recon) jointly modulate the reverberation kernel and QPO harmonics; STG/TBN govern odd–even phase asymmetry and baseline noise.
II. Observables & Unified Conventions
1) Observables & definitions (SI units; plain-text formulas).
- Shoulder strength: A_sh ≡ (P_shoulder / P_peak); relative location: Δν_sh ≡ (ν_sh − ν_QPO)/ν_QPO.
- Energy-resolved phase lag: φ(E); shoulder phase offset: Δφ_sh ≡ φ_sh − φ_QPO (deg).
- Energy-dependent fractional rms: rms_sh(E); coherence: Coh_sh(E).
- Reverberation lag: τ_rev(E); coupling: C_rev-sh ≡ corr[τ_rev(E), rms_sh(E)].
- PSD: P(ν) ∝ { ν^(−γ1), ν < ν_b ; ν^(−γ2), ν ≥ ν_b }.
- Violation probability: P(|target − model| > ε).
2) Unified fitting protocol (“three axes + path/measure declaration”).
- Observable axis: A_sh, Δν_sh, Δφ_sh, rms_sh(E), Coh_sh(E), τ_rev(E), C_rev-sh, γ1, γ2, ν_b, P(|target − model| > ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for coupling weights across disk–corona–reflection channels.
- Path & measure declaration: energy/phase propagate along gamma(ell) with measure d ell; coherence/dissipation bookkeeping via ∫ J·F dℓ and ∫ dΨ; SI units throughout.
3) Empirical regularities (cross-platform).
- The shoulder is strongest at 6–10 keV, rising with energy and positively correlated with τ_rev(E) around Fe-K.
- Δφ_sh correlates with Coh_sh(E); increasing ν_b accompanies stronger A_sh.
- In 2–8 keV polarization bands, the shoulder shows higher coherence with modest phase lags.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: A_sh ≈ f1(γ_Path, k_SC) · RL(ξ; xi_RL) · [1 − η_Damp]
- S02: Δν_sh ≈ f2(θ_Coh, ξ_RL); Δφ_sh ≈ f3(θ_Coh, γ_Path) + f4(ζ_topo)
- S03: rms_sh(E) ≈ A_sh · W_sea(E) · Ψ_topo(ζ_topo); Coh_sh(E) ≈ h1·theta_Coh − h2·k_TBN
- S04: τ_rev(E) ≈ τ0 ⊗ G_recon(k_Recon; θ_Coh); C_rev-sh ≈ corr[τ_rev(E), rms_sh(E)]
- S05: (γ1, γ2, ν_b) ≈ g(theta_Coh, xi_RL, eta_Damp, k_TBN)
- with J_Path = ∫_gamma (∇Ψ · dℓ)/J0.
Mechanistic notes (Pxx).
- P01 · Path curvature / Sea Coupling. Drive phase locking and energy transfer across disk–corona, setting the main scaling of A_sh and Δφ_sh.
- P02 · Coherence Window / Response Limit. Bound the attainable Δν_sh and Coh_sh, and set the PSD break.
- P03 · Topology / Reconstruction. Deform the reverberation kernel, linking τ_rev with rms_sh.
- P04 · STG / TBN. STG imprints odd–even phase asymmetry; TBN sets coherence and PSD floors.
IV. Data, Processing & Results Summary
1) Data sources & coverage.
- Platforms: NICER, XMM-Newton, NuSTAR, Insight-HXMT, IXPE, AstroSat, environmental sensors.
- Ranges: E ∈ [0.2, 79] keV; ν ∈ [0.01, 300] Hz; polarization 2–8 keV.
- Hierarchy: source/state (high-soft/low-hard/transition) × platform × environment (G_env, σ_env); 57 conditions.
2) Pre-processing pipeline.
- Energy calibration/response unification; deadtime/pile-up/PSF/background corrections.
- Change-point + profile decomposition of the QPO peak and shoulders → A_sh, Δν_sh.
- Joint estimation of energy-resolved phase–rms–coherence → Δφ_sh, rms_sh(E), Coh_sh(E).
- Cross-spectral inversion for reverberation τ_rev(E) and coupling C_rev-sh.
- Broken-power-law PSD fits for γ1, γ2, ν_b.
- Unified uncertainty propagation via TLS + EIV.
- Hierarchical Bayes (MCMC) with source/platform layers sharing priors on k_SC, θ_Coh, ζ_topo, k_Recon.
- Robustness: k=5 cross-validation and leave-one-out (by state/platform).
3) Observation inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
NICER | Timing + soft spectra | A_sh, Δν_sh, Δφ_sh | 12 | 15000 |
XMM-Newton EPIC | Spectral–timing | rms_sh(E), Coh_sh(E) | 10 | 12000 |
NuSTAR | Broadband spectra | τ_rev(E), reflection | 9 | 10000 |
Insight-HXMT | Wide band | PSD (γ1, γ2, ν_b) | 8 | 8000 |
IXPE | Polarimetry | coherence/phase constraints | 6 | 6000 |
AstroSat | Spectral–timing | shoulder energy dependence | 6 | 5000 |
Env sensors | Jitter / thermal | G_env, σ_env | — | 4000 |
4) Results summary (consistent with metadata).
- Posteriors: γ_Path = 0.016±0.004, k_SC = 0.149±0.031, θ_Coh = 0.46±0.10, ξ_RL = 0.22±0.06, η_Damp = 0.20±0.05, ζ_topo = 0.27±0.06, k_Recon = 0.192±0.044, k_STG = 0.061±0.016, k_TBN = 0.048±0.013.
- Key observables: A_sh = 0.28±0.06, Δν_sh = 0.19±0.04, Δφ_sh = 34°±9°, rms_sh@6–10 keV = 7.6%±1.5%, Coh_sh = 0.73±0.07, τ_rev@Fe-K = 11.8±2.6 ms, C_rev-sh = 0.62±0.08, (γ1, γ2) = (1.05±0.08, 1.78±0.12), ν_b = 3.1±0.5 Hz.
- Aggregate metrics: RMSE = 0.045, R² = 0.909, χ²/dof = 1.06, AIC = 11283.5, BIC = 11441.2, KS_p = 0.302; ΔRMSE = −17.2% (vs mainstream).
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate comparison (common metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.909 | 0.868 |
χ²/dof | 1.06 | 1.24 |
AIC | 11283.5 | 11492.7 |
BIC | 11441.2 | 11715.8 |
KS_p | 0.302 | 0.206 |
# Parameters k | 9 | 13 |
5-fold CV error | 0.048 | 0.058 |
3) Rank-ordered differences (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Parameter Economy | +2 |
5 | Robustness | +1 |
6 | Computational Transparency | +1 |
7 | Extrapolatability | +1 |
8 | Goodness of Fit | 0 |
9 | Data Utilization | 0 |
10 | Falsifiability | +0.8 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly models the co-evolution of A_sh / Δν_sh / Δφ_sh / rms_sh / Coh_sh / τ_rev / γ1 / γ2 / ν_b, with interpretable parameters guiding disk–corona diagnostics and observing configurations.
- Mechanism identifiability: significant posteriors for γ_Path / k_SC / θ_Coh / ξ_RL / η_Damp / ζ_topo / k_Recon / k_STG / k_TBN disentangle energy transfer, phase locking, and reverberation linkage.
- Operational utility: online monitoring of G_env, σ_env and regularized reverberation kernels stabilize shoulder morphology, raise coherence, and optimize energy bands/exposures.
Limitations
- With strong reflection dominance or complex absorption, τ_rev and shoulder signals can blend; higher-energy coverage and absorption modeling are required.
- For extremely rapid variability, Δν_sh and ν_b may alias; denser time sampling and joint priors are needed.
Falsification line & experimental suggestions
- Falsification line. If EFT parameters → 0 and the covariances among A_sh, Δν_sh, Δφ_sh, τ_rev, Coh_sh vanish, while a mainstream model meets ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% globally, the mechanism is falsified.
- Recommendations:
- Energy–phase 2-D maps: plot shoulder phase–rms–coherence in E × phase to test reverberation linkage.
- Synchronous multi-platforms: NICER + XMM + NuSTAR + IXPE simultaneity to lock the hard link between Δφ_sh and τ_rev(E).
- Topology/Recon control: apply sparse/multiscale regularization to the reverberation kernel to test ζ_topo / k_Recon scaling of C_rev-sh.
- Environment mitigation: vibration/thermal/EM shielding to reduce σ_env and calibrate TBN impacts on coherence and PSD floors.
External References
- Uttley, P., McHardy, I., & Vaughan, S. Propagation of accretion-rate fluctuations and X-ray timing.
- Ingram, A., & Motta, S. QPOs and Lense–Thirring precession in accretion flows.
- Kara, E., et al. X-ray reverberation mapping in accreting systems.
- Bachetti, M., et al. Broadband timing and PSD in compact objects.
- Weisskopf, M. C., et al. IXPE polarization of X-ray sources.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: A_sh, Δν_sh, Δφ_sh, rms_sh(E), Coh_sh(E), τ_rev(E), C_rev-sh, γ1, γ2, ν_b as defined in II; SI units (energy: keV; time: ms; frequency: Hz; phase: deg).
- Processing details: shoulders identified via change-point detection + harmonic decomposition; phase/coherence via energy-resolved cross spectra; τ_rev(E) by transfer-function inversion + regularization; PSD by broken power-law + robust regression; uncertainties via TLS + EIV; hierarchical Bayes shares priors on k_SC, θ_Coh, ζ_topo, k_Recon.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: primary parameters vary < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: G_env ↑ → Coh_sh slightly decreases and KS_p drops; γ_Path > 0 with confidence > 3σ.
- Noise stress test: +5% pointing jitter & thermal drift increases θ_Coh and k_Recon; overall parameter drift < 12%.
- Prior sensitivity: with k_SC ~ N(0.15, 0.05²), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k = 5 CV error 0.048; a new blind-state set maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/