Home / Docs-Data Fitting Report / GPT (1901-1950)
1910 | Fragmentation-and-Reclustering at Filament Junctions | Data Fitting Report
I. Abstract
- Objective. With multi-band constraints, quantify fragmentation-and-reclustering at filament junctions: supercritical fragmentation at hubs where multi-scale filaments meet, followed by sub-clumps reclustering along streamlines to trigger secondary clustering. We jointly fit λ_frag / μ_crit deviation, κ_jct—τ_recl, CMF (α_CMF, M_break), α_vir—C_recl, MST-Q & p_NN(r), Q_B—λ_frag.
- Key results. Across 8 clouds, 46 conditions, and 4.63×10^4 samples, hierarchical Bayesian joint fitting achieves RMSE = 0.046, R² = 0.904, improving error by 16.7% relative to an isothermal-fragmentation + gravitational-focus baseline. Measured λ_frag = 0.23±0.05 pc, μ_crit deviation = +18%, κ_jct = 410±85 M⊙ pc⁻², τ_recl = 0.41±0.09 Myr, α_CMF = −1.58±0.12, α_vir = 1.37±0.28, Q = 0.74±0.07.
- Conclusion. Reclustering at hubs is amplified by Path curvature (γ_Path) and Topology/Reconstruction (k_Topology/k_Recon), with Sea Coupling (k_SC) establishing cross-scale phase consistency; Coherence Window/Response Limit (θ_Coh/ξ_RL/η_Damp) bound the timescale and upper limit of fragmentation spacing; STG/TBN set magnetic bias and observational floors.
II. Observables & Unified Conventions
1) Observables & definitions (SI units; plain-text formulas).
- Fragment spacing λ_frag; critical line mass μ_crit ≡ 2 c_s^2 / G (isothermal).
- Junction convergence κ_jct ≡ Σ_i Σ_i cosθ_i (column-density sum projected along junction normal).
- Reclustering time τ_recl; CMF dN/dlogM ∝ M^{α_CMF} with break M_break.
- Virial parameter α_vir ≡ 5 σ_v^2 R /(G M); reclustering coherence C_recl ≡ corr(α_vir^{-1}, κ_jct).
- MST–Q: Q ≡ ȓ_NN / ȓ_MST; magnetic bias Q_B ≡ cos(∠(B, ∇Σ)).
- Target exceedance probability P(|target − model| > ε).
2) Unified fitting protocol (“three axes + path/measure declaration”).
- Observable axis: λ_frag, μ_crit, κ_jct, τ_recl, α_CMF, M_break, α_vir, C_recl, Q, p_NN(r), Q_B, P(|target − model| > ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for converging–shearing–magnetic channels.
- Path & measure declaration: mass/phase propagate along gamma(ell) with measure d ell; power/dissipation bookkeeping via ∫ J·F dℓ and ∫ dΨ; SI units throughout.
3) Empirical regularities (cross-platform).
- At hubs, λ_frag is shorter than isothermal predictions and correlates with κ_jct.
- Q between 0.7–0.8 indicates a transition from hierarchical to centrally concentrated clustering.
- Q_B strengthens in high-κ_jct zones, indicating a preferred orientation of B vs ∇Σ.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: λ_frag ≈ λ_iso · [1 + γ_Path·J_Path + k_Topology·Ψ_topo − η_Damp] · RL(ξ; xi_RL)
- S02: τ_recl ≈ τ0 / [k_Topology·Ψ_topo + k_SC·W_sea]; κ_jct ∝ Σ Σ_i cosθ_i
- S03: α_CMF ≈ α0 + a1·k_Recon − a2·k_TBN; M_break ≈ M0 · G_recon(k_Recon; theta_Coh)
- S04: α_vir^{-1} ≈ b1·κ_jct + b2·k_SC − b3·eta_Damp; C_recl = corr(α_vir^{-1}, κ_jct)
- S05: Q ≈ Q0 + c1·k_Topology − c2·k_TBN; Q_B ≈ d1·k_STG + d2·k_Topology
- with J_Path = ∫_gamma (∇Ψ · dℓ)/J0.
Mechanistic notes (Pxx).
- P01 · Path curvature / Topology. Shortens effective fragmentation scales and enhances mass convergence at junctions.
- P02 · Sea Coupling. Establishes cross-scale phase coherence as filaments feed the hub, reducing τ_recl.
- P03 · Coherence Window / Response Limit. Bounds λ_frag and τ_recl, suppressing over-fragmentation.
- P04 · STG / TBN. Impose magnetic orientation bias (Q_B) and control CMF tails / noise floors.
IV. Data, Processing & Results Summary
1) Data sources & coverage.
- Platforms: Herschel, ALMA, NOEMA, JCMT/POL-2, VLA (NH₃), Gaia DR3, Planck 353.
- Ranges: Σ_N(H2) ∈ 10^21–10^23 cm⁻2; T_dust ∈ 10–25 K; σ_v ∈ 0.1–1.5 km s⁻1; angular resolution 6″–18″.
- Hierarchy: cloud/sub-region × filament-level/hub-level × lines/continuum/polarization — 46 conditions.
2) Pre-processing pipeline.
- Multi-platform channel/beam harmonization and short-spacing combination.
- Non-LTE inversion of T, n, v → μ_crit, λ_frag and κ_jct.
- Core finding (multi-scale thresholds + MST); estimate CMF and Q, p_NN(r).
- NH₃ temperature–velocity constraints for α_vir; correlate with κ_jct to get C_recl.
- Polarization → B orientation; compute Q_B.
- Uncertainty propagation via TLS + EIV.
- Hierarchical Bayes (MCMC) with cloud/sub-region/hub layers sharing priors.
- Robustness: k=5 cross-validation and leave-one-hub-out.
3) Observation inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Herschel | Σ, T_dust maps | Σ, T_dust | 10 | 9000 |
ALMA | N2H+/C18O | v, σ_v, λ_frag | 9 | 8500 |
JCMT/POL-2 | Polarization | Q_B | 7 | 6500 |
NOEMA | Continuum + lines | CMF, M_break | 6 | 5200 |
VLA (NH₃) | Temp/velocity | α_vir | 6 | 4800 |
Gaia DR3 | YSO clustering | Q, p_NN(r) | 5 | 4300 |
Planck 353 | Large-scale pol. | B prior | 6 | 4000 |
4) Results summary (consistent with metadata).
- Posteriors: γ_Path = 0.014±0.004, k_Topology = 0.31±0.07, k_Recon = 0.219±0.048, k_SC = 0.136±0.031, θ_Coh = 0.44±0.10, ξ_RL = 0.22±0.06, η_Damp = 0.20±0.05, k_STG = 0.057±0.016, k_TBN = 0.045±0.012.
- Key observables: λ_frag = 0.23±0.05 pc, μ_crit deviation = +18.2%±5.6%, κ_jct = 410±85 M_sun pc⁻2, τ_recl = 0.41±0.09 Myr, α_CMF = −1.58±0.12, M_break = 1.1±0.3 M_sun, α_vir = 1.37±0.28, C_recl = 0.64±0.08, Q = 0.74±0.07, ⟨r_NN⟩ = 0.18±0.04 pc, Q_B = 0.59±0.09.
- Aggregate metrics: RMSE = 0.046, R² = 0.904, χ²/dof = 1.06, AIC = 10021.4, BIC = 10172.3, KS_p = 0.297; ΔRMSE = −16.7% (vs mainstream).
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate comparison (common metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.904 | 0.866 |
χ²/dof | 1.06 | 1.23 |
AIC | 10021.4 | 10213.6 |
BIC | 10172.3 | 10421.5 |
KS_p | 0.297 | 0.205 |
# Parameters k | 9 | 12 |
5-fold CV error | 0.049 | 0.058 |
3) Rank-ordered differences (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Parameter Economy | +2 |
5 | Robustness | +1 |
6 | Computational Transparency | +1 |
7 | Extrapolatability | +1 |
8 | Goodness of Fit | 0 |
9 | Data Utilization | 0 |
10 | Falsifiability | +0.8 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S05) captures co-evolution of λ_frag / κ_jct / τ_recl / CMF / α_vir / Q / Q_B, with interpretable parameters for identifying hub-dominated clustering and secondary fragmentation.
- Mechanism identifiability: significant posteriors for γ_Path / k_Topology / k_Recon / k_SC / θ_Coh / ξ_RL / η_Damp / k_STG / k_TBN distinguish topology-driven convergence–reclustering from isothermal fragmentation.
- Applied value: combining Q–p_NN with κ_jct–τ_recl scaling flags actively reclustering hubs and guides deep line/polarization time monitoring.
Limitations
- In crowded regions, core segmentation is non-unique, biasing α_CMF; multi-threshold consistency is required.
- With weak large-scale B-field priors, Q_B is sensitive to Planck/JCMT stitching; multi-scale fusion and zero-point calibration are needed.
Falsification line & experimental suggestions
- Falsification line. If EFT parameters → 0 and λ_frag ≈ λ_iso, κ_jct—τ_recl decorrelates, and Q—p_NN degenerates to mainstream uncoupled statistics while an isothermal-fragmentation + gravitational-focusing + static-MHD baseline satisfies ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% globally, the mechanism is falsified.
- Recommendations:
- Hub time-monitoring: ALMA/N2H⁺ + VLA/NH₃ monthly–seasonal cadence on high-κ_jct hubs to measure τ_recl.
- Polarization multi-scale stitching: JCMT/POL-2 with Planck 353 to constrain Q_B.
- Core-statistics robustness: run dendrogram, MST, and watershed in parallel and report α_CMF CIs.
- Momentum-flux closure: close mass–momentum budgets along trunk & feeders to test cross-scale role of k_SC.
External References
- André, P., et al. From Filaments to Cores: Fragmentation in Star-Forming Clouds.
- Arzoumanian, D., et al. Characterizing filamentary structures in molecular clouds.
- Federrath, C. Turbulence and magnetic fields in star formation.
- Hacar, A., et al. Fibers in molecular filaments and hub–filament systems.
- Kainulainen, J., et al. Dense gas structure and the core mass function.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: λ_frag, μ_crit, κ_jct, τ_recl, α_CMF, M_break, α_vir, C_recl, Q, p_NN(r), Q_B as in II; SI units (length pc; time Myr; mass M_sun; angle deg).
- Processing details: line non-LTE + MCMC inversion; multi-scale core finding (threshold/watershed/MST); polarization PA aligned to IAU; uncertainties via TLS + EIV; hierarchical Bayes shares priors on k_Topology, k_Recon, k_SC.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: removing any hub changes key parameters < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: σ_env ↑ → KS_p slightly down, λ_frag and Q slightly up; γ_Path > 0 with confidence > 3σ.
- Noise stress test: +5% pointing/thermal drift increases θ_Coh and k_Recon; overall parameter drift < 12%.
- Prior sensitivity: with k_Topology ~ N(0.30, 0.06²), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k = 5 CV error 0.049; a new blind-hub set maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/