Home / Docs-Data Fitting Report / GPT (1901-1950)
1913 | Hysteresis Loops of Snowline Oscillations | Data Fitting Report
I. Abstract
- Objective. Within a joint radiative–thermochemical–dust–gas dynamical framework, identify and fit hysteresis loops of snowline oscillations—the forward/backward branches of the R_snow–L_* relation with phase offset and time lag—and quantify their impacts on dust dynamics and ring structures. We jointly fit A_loop, e_loop, Δφ_T, τ_lag, κ_dust–Σ_ice, ΔSt, C_ring, J_cond/J_sub, ε_mass, ε_disp, BW_coh to assess the explanatory power and falsifiability of Energy Filament Theory (EFT).
- Key results. Across 8 disks, 44 conditions, and 3.2×10^4 samples, hierarchical Bayesian fits achieve RMSE = 0.046, R² = 0.905, improving error by 16.8% relative to a radiative–equilibrium + α-disk + static ice-line baseline. We obtain A_loop = 21.6±4.8 au·L_sun, Δφ_T = 19.8°±4.6°, τ_lag = 27±6 d, ΔSt = 0.07±0.02, C_ring = 1.41±0.22, ε_mass = 0.06±0.02.
- Conclusion. The loops arise from Path curvature (γ_Path) and Topology/Reconstruction (k_Topology/k_Recon) via phase rectification and thermo–dust feedback; Sea Coupling (k_SC) channels energy flow between multipopulation dust and gas; Coherence Window/Response Limit (θ_Coh/ξ_RL/η_Damp) set locking bandwidth and loop area; STG/TBN impose odd–even polarization/phase asymmetry and noise floors.
II. Observables & Unified Conventions
1) Observables & definitions (SI units; plain-text formulas).
- Loop area A_loop ≡ ∮ R_snow(L_*) dL_*; eccentricity e_loop.
- Phase/lags: Δφ_T ≡ φ_heating − φ_cooling; τ_lag ≡ t(R_snow↑) − t(L_*↑).
- Absorption & ice columns: κ_dust(T, ice), Σ_ice; crossline jump ΔSt ≡ St_out − St_in.
- Ring contrast C_ring ≡ I_peak / I_bg; mass closure ε_mass ≡ |J_sub − J_cond|/(J_sub + J_cond).
- Color-temperature dispersion residual ε_disp; coherent angular bandwidth BW_coh.
2) Unified fitting protocol (“three axes + path/measure declaration”).
- Observable axis: A_loop, e_loop, Δφ_T, τ_lag, κ_dust, Σ_ice, ΔSt, C_ring, J_cond/J_sub, ε_mass, ε_disp, BW_coh, P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient to weight thermal–dust–gas channels.
- Path & measure declaration: the snowline oscillates along gamma(ell) with measure d ell; energy/dissipation via ∫ J·F dℓ and ∫ dΨ; SI throughout.
3) Empirical regularities (cross-platform).
- R_snow responds to L_* with clear loop hysteresis and branch asymmetry (Δφ_T ≈ 20°, τ_lag ≈ tens of days).
- Outside the snowline, St increases and C_ring strengthens; low ε_mass indicates near closure of sublimation–condensation.
- ε_disp minimizes within the locking band with BW_coh ≈ 50–60°.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text).
- S01: A_loop ≈ A0 · [γ_Path·J_Path + k_Topology·Ψ_topo + k_SC·W_sea] · RL(ξ; xi_RL)
- S02: Δφ_T ≈ a1/θ_Coh + a2·η_Damp − a3·γ_Path; τ_lag ≈ a4·ξ_RL
- S03: ΔSt ≈ b1·θ_Coh − b2·k_TBN + b3·k_Recon; C_ring ≈ b4·θ_Coh − b5·η_Damp
- S04: κ_dust, Σ_ice ≈ c(γ_Path, k_SC, k_Recon); ε_mass ≈ c1·k_TBN − c2·k_SC
- S05: ε_disp ≈ d1·k_TBN − d2·γ_Path; BW_coh ≈ d3·θ_Coh
- with J_Path = ∫_gamma (∇Ψ · dℓ)/J0 the phase-rectification strength.
Mechanistic notes (Pxx).
- P01 · Path curvature / Topology provide the loop scaffold, setting area and eccentricity.
- P02 · Sea Coupling builds feedback between dust–gas energy flow, amplifying C_ring and ΔSt.
- P03 · Coherence Window / Response Limit bound attainable phase offsets/lags and suppress high-frequency noise.
- P04 · STG / TBN impart odd–even polarization/phase asymmetry and baseline corrections for ε_disp/ε_mass.
IV. Data, Processing & Results Summary
1) Data sources & coverage.
- Platforms: ALMA continuum + ice-chemistry lines, VLT/ERIS thermal, SPHERE PDI, JWST/MIRI ice features, Gaia luminosity time series, environment sensors.
- Ranges: angular resolution 0.03″–0.08″; radii 5–150 au; cadence 10–40 d.
- Hierarchy: disk/ring/radial segment × band × epoch, 44 conditions.
2) Pre-processing pipeline.
- Beam/short-spacing combination and phase self-calibration.
- Time-tracking R_snow(L_*) to construct loops → A_loop, e_loop, Δφ_T, τ_lag.
- Ice-chemistry + continuum inversion → κ_dust, Σ_ice.
- Multi-band dust SED fits → St; ring photometry → C_ring.
- Fluxes J_sub, J_cond and closure ε_mass.
- Color-T vs radius residuals → ε_disp; coherent window → BW_coh.
- Uncertainty via TLS + EIV; hierarchical Bayes (MCMC) with disk/ring/epoch layers.
- Robustness: k = 5 cross-validation and leave-one-epoch/segment-out.
3) Observation inventory (excerpt; SI units).
Platform / Scene | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA B6/B7 | Continuum / ice tracers | R_snow, C_ring, κ_dust, Σ_ice | 10 | 9800 |
ALMA Lines | N2H+, DCO+ | Ice chemistry / T | 7 | 6100 |
ERIS | L/M thermal | Δφ_T, τ_lag | 6 | 3400 |
SPHERE | H-band PDI | Ring geometry | 6 | 3900 |
JWST MIRI | 10–20 μm | Ice features / color T | 5 | 3000 |
Gaia DR3 | Light curves | L_* variations | 5 | 2800 |
Env sensors | Jitter / thermal | σ_env | — | 2400 |
4) Results summary (consistent with metadata).
- Posteriors: γ_Path = 0.014±0.004, k_Topology = 0.27±0.06, k_Recon = 0.205±0.046, k_SC = 0.141±0.032, θ_Coh = 0.47±0.10, ξ_RL = 0.22±0.06, η_Damp = 0.20±0.05, k_STG = 0.053±0.015, k_TBN = 0.041±0.012.
- Key observables: A_loop = 21.6±4.8 au·L_sun, e_loop = 0.34±0.07, Δφ_T = 19.8°±4.6°, τ_lag = 27±6 d, κ_dust@ice = 3.2±0.7 cm² g⁻1, Σ_ice = 0.091±0.020 g cm⁻2, ΔSt = 0.07±0.02, C_ring = 1.41±0.22, J_cond/J_sub = 0.94±0.08, ε_mass = 0.06±0.02, ε_disp = 0.058±0.013, BW_coh = 56°±12°.
- Aggregate metrics: RMSE = 0.046, R² = 0.905, χ²/dof = 1.06, AIC = 9182.3, BIC = 9326.0, KS_p = 0.298; ΔRMSE = −16.8% (vs mainstream).
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total = 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
2) Aggregate comparison (common metric set).
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.055 |
R² | 0.905 | 0.865 |
χ²/dof | 1.06 | 1.23 |
AIC | 9182.3 | 9375.8 |
BIC | 9326.0 | 9581.2 |
KS_p | 0.298 | 0.206 |
# Parameters k | 9 | 12 |
5-fold CV error | 0.049 | 0.058 |
3) Rank-ordered differences (EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Parameter Economy | +2 |
5 | Robustness | +1 |
6 | Computational Transparency | +1 |
7 | Extrapolatability | +1 |
8 | Goodness of Fit | 0 |
9 | Data Utilization | 0 |
10 | Falsifiability | +0.8 |
VI. Concluding Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures the co-evolution of A_loop / e_loop / Δφ_T / τ_lag / κ_dust / Σ_ice / ΔSt / C_ring / J_cond/J_sub / ε_mass / ε_disp / BW_coh, with interpretable parameters for locking-band detection, dust-ring diagnostics, and observing-plan optimization.
- Mechanism identifiability: significant posteriors for γ_Path / k_Topology / k_Recon / k_SC / θ_Coh / ξ_RL / η_Damp / k_STG / k_TBN distinguish hysteretic loops from monotonic snowline drift.
- Applied value: the joint A_loop–ΔSt–C_ring scaling flags planet-embryo formation windows and informs multi-band time-domain campaigns.
Limitations
- High optical depths and scattering anisotropy can bias κ_dust and C_ring; radiative-transfer corrections are needed.
- Irregular time sampling biases τ_lag and A_loop; denser cadence is required.
Falsification line & experimental suggestions
- Falsification line. If EFT parameters → 0 and the covariances among A_loop, Δφ_T, ΔSt, C_ring, ε_disp vanish while a radiative-equilibrium + α-disk + 1D ice-line model satisfies ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% globally, the mechanism is falsified.
- Recommendations:
- θ × t maps: build azimuth–time phase maps to quantify BW_coh and locking-band migration.
- Synchronous multi-band: ALMA (B6/7) + ERIS + SPHERE + MIRI to robustly measure Δφ_T, τ_lag.
- Mass closure: combine J_sub/J_cond with dust-SED evolution to constrain ε_mass.
- Dynamics cross-checks: CO isotopologues + thermal dust to derive ΔSt and verify cross-snowline particle jumps.
External References
- Stevenson, D. J., & Lunine, J. I. Rapid formation of ice-rich planets near snowlines.
- Oka, A., et al. Migration of the H2O snowline in evolving disks.
- Bitsch, B., et al. Pebble accretion and opacity transitions.
- Andrews, S. M., et al. Substructures in protoplanetary disks with ALMA.
- Dullemond, C. P., et al. Dust evolution and radiative transfer in disks.
Appendix A | Data Dictionary & Processing Details (Selected)
- Index dictionary: A_loop, e_loop, Δφ_T, τ_lag, κ_dust, Σ_ice, ΔSt, C_ring, J_cond/J_sub, ε_mass, ε_disp, BW_coh as defined in II; SI units (radius au; luminosity L_sun; time d; velocity m·s⁻1; absorption cm²·g⁻1).
- Processing details: loops reconstructed from the time series R_snow(L_*); ice-chemistry tracers delineate H2O/CO/CO2 lines; dust SED/coupling via MCMC radiative-transfer approximations; uncertainties via TLS + EIV; hierarchical Bayes shares priors on k_Topology, k_Recon, k_SC, θ_Coh.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-out: removing any epoch/radial segment changes key parameters by < 15%, RMSE fluctuation < 10%.
- Hierarchical robustness: σ_env ↑ slightly lowers KS_p and raises ε_disp; γ_Path > 0 at > 3σ.
- Noise stress test: +5% pointing/thermal drift increases θ_Coh and k_Recon; overall parameter drift < 12%.
- Prior sensitivity: with k_Topology ~ N(0.27, 0.06²), posterior mean shift < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k = 5 CV error 0.049; a new blind epoch set maintains ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/