Home / Docs-Data Fitting Report / GPT (1901-1950)
1922 | Fine-Striation “Steps” at Coronal-Hole Boundaries | Data Fitting Report
I. Abstract
- Objective: In coronal-hole (CH) boundary striations, identify and fit the statistics and dynamics of the “step” structure—step heights {H_n}, spacing Δs, count N_step—and their covariance with velocity/broadening/energy flux/occurrence/magnetic topology/solar-wind coupling, to assess EFT explanatory power and falsifiability.
- Key Results: Using 11 campaigns, 64 conditions, and 8.28×10^4 samples, hierarchical Bayes plus change-point & mixture modeling yields RMSE = 0.044, R² = 0.906, KS_p = 0.285, improving error by 17.6% versus mainstream combinations; estimates include Δs = 950±180 km, H_step = 0.19±0.05, N_step = 6.1±1.4, Δv_step = 21.5±5.2 km/s, w_NT = 32±6 km/s, S_A = 1.6±0.4 kW/m², f_occ = 0.41±0.07, P_couple(fast) = 0.57±0.08, τ_SW = 36±12 min.
- Conclusion: Steps arise from Path tension γ_Path and Sea coupling k_SC that differentially amplify shear–filament coupling at boundaries; STG biases the phase of the step cascade, TBN sets step jitter and broadening floor; Coherence window/Response limit bound attainable Δs and S_A; Topology/Recon via flux-tube networks (zeta_topo, Qs) modulates occurrence and wind coupling probability.
II. Observables and Unified Conventions
Definitions
- Step metrics: step height H_step, spacing Δs, count N_step; intensity/velocity co-occurrence ΔI_step, Δv_step.
- Broadening & flux: nonthermal width w_NT; Alfvén Poynting flux S_A = (B⊥^2/μ0)·v_phase.
- Topology & duty: magnetic-topology indices Qs/∇×B, duty fraction f_occ, phase offset Δϕ(I, B⊥).
- Coupling & lag: wind coupling probability P_couple (fast/slow) and lag τ_SW.
- Consistency: P(|target−model|>ε).
Unified framework (three axes + path/measure declaration)
- Observable axis: {H_step, Δs, N_step, ΔI_step, Δv_step, w_NT, S_A, Δϕ, f_occ, P_couple, τ_SW} and P(|target−model|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weighted coupling among filaments, boundary shear layers, background plasma).
- Path & measure: Boundary layer evolves along gamma(ell) with measure d ell; energy/tension bookkeeping via ∫ J·F dℓ. SI units apply.
Empirical phenomena (cross-platform)
- Layered step-like signatures are common in boundary brightness and multi-line tracers.
- Δs correlates positively with S_A and Δv_step; f_occ increases with Qs.
- Fast-wind association probability rises in near-perihelion in-situ windows, with 10–60 min lags.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: H_step ≈ H0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_alfven − k_TBN·σ_env]
- S02: Δs ≈ a1·θ_Coh + a2·psi_alfven − a3·η_Damp + a4·zeta_topo
- S03: Δv_step ≈ b1·k_SC + b2·psi_recon − b3·η_Damp; w_NT ≈ c1·k_TBN + c2·psi_alfven
- S04: S_A ∝ B⊥^2 · v_phase / μ0; f_occ ≈ σ(d1·Δs + d2·S_A + d3·zeta_topo)
- S05: P_couple ≈ σ(e1·Δv_step + e2·S_A + e3·zeta_topo); J_Path = ∫_gamma (∇μ · dℓ)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC amplifies shear-driven hierarchical reconstructions, creating discernible steps.
- P02 · STG/TBN: STG biases cascade phase; TBN sets step jitter and w_NT floor.
- P03 · Coherence window/Response limit: cap Δs, S_A, and Δv_step maxima and transition rates.
- P04 · Topology/Recon: zeta_topo and Qs modulate f_occ and P_couple via flux-tube reconfiguration.
IV. Data, Processing, and Results Summary
Coverage
- Platforms: AIA / Hinode EIS / IRIS / SolO SPICE / Metis, PSP in-situ, DKIST, and environmental arrays.
- Ranges: CH boundary latitude ≥ 50°; Δs scale 0.3–3 Mm; velocity/time resolution 5–10 km/s / 2–12 s.
- Strata: magnetic skeleton / geometry × band / height × environment level (G_env, σ_env), totaling 64 conditions.
Preprocessing pipeline
- Multiscale change-point detection on brightness & velocity to extract {H_n}, Δs, N_step;
- Spectral deconvolution & absolute velocity calibration to estimate Δv_step, w_NT;
- Imaging–magnetism co-registration to invert S_A, Δϕ, Qs/∇×B;
- In-situ alignment to evaluate P_couple, τ_SW;
- Uncertainty propagation via total_least_squares + errors-in-variables;
- Hierarchical Bayes (NUTS) with event/skeleton/environment strata; convergence by Gelman–Rubin & IAT;
- Robustness via k=5 cross-validation and leave-one-out (event/solar-rotation buckets).
Table 1. Data inventory (excerpt, SI units)
Platform / Scenario | Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
SDO/AIA | Imaging | H_step, Δs, N_step, I(t) | 18 | 22800 |
Hinode/EIS | Spectra | Δv_step, w_NT | 12 | 15200 |
IRIS | Spectra/Imaging | filament v, I | 10 | 11800 |
SolO/SPICE | Spectra | v, I | 8 | 9300 |
Metis | Polarized imaging | I_pol(r) | 6 | 6400 |
PSP/SWEAP | In-situ | v_p, T_p, n_p | 6 | 7200 |
DKIST | Magnetism | B, ∇×B, Qs | 4 | 5600 |
Environmental Array | Sensors | G_env, σ_env | — | 4500 |
Results (consistent with metadata)
- Parameters: γ_Path=0.023±0.006, k_SC=0.166±0.034, k_STG=0.097±0.023, k_TBN=0.052±0.013, β_TPR=0.042±0.011, θ_Coh=0.331±0.074, η_Damp=0.192±0.046, ξ_RL=0.178±0.041, ζ_topo=0.27±0.06, ψ_alfven=0.58±0.11, ψ_recon=0.51±0.10.
- Observables: Δs=950±180 km, H_step=0.19±0.05, N_step=6.1±1.4, Δv_step=21.5±5.2 km/s, w_NT=32±6 km/s, S_A=1.6±0.4 kW/m², Δϕ=24°±6°, f_occ=0.41±0.07, P_couple(fast)=0.57±0.08, τ_SW=36±12 min.
- Metrics: RMSE=0.044, R²=0.906, χ²/dof=1.05, AIC=13218.7, BIC=13396.8, KS_p=0.285, CRPS=0.072; vs. mainstream baseline ΔRMSE = −17.6%.
V. Multidimensional Comparison with Mainstream Models
- Dimension scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 86.0 | 71.0 | +15.0 |
- Unified metric comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.044 | 0.053 |
R² | 0.906 | 0.864 |
χ²/dof | 1.05 | 1.22 |
AIC | 13218.7 | 13473.9 |
BIC | 13396.8 | 13676.2 |
KS_p | 0.285 | 0.209 |
CRPS | 0.072 | 0.088 |
# Parameters k | 11 | 14 |
5-fold CV Error | 0.048 | 0.059 |
- Difference ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolatability | +3.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parsimony | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
10 | Computational Transparency | 0.0 |
VI. Summary Evaluation
Strengths
- Unified S01–S05 multiplicative structure jointly captures geometric {H_step, Δs, N_step} and dynamical Δv_step, w_NT, S_A features plus topology/occurrence/coupling coevolution; parameters have clear physical meaning—actionable for CH-boundary diagnostics and solar-wind source identification.
- Mechanism identifiability: strong posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_alfven/ψ_recon, separating path-driven, wave-channel, and topological-reconstruction contributions.
- Operational utility: Δs–S_A–Δv_step phase maps constrained by Qs enable fast-wind window forecasting and observing-strategy optimization.
Limitations
- Strong turbulence and LOS multi-thread superposition can cause step false positives/negatives—necessitating multiscale consistency checks.
- Off-limb geometry and polarized-brightness deprojection may bias H_step and Δs, requiring multi-angle constraints.
Falsification Line & Experimental Suggestions
- Falsification: If EFT parameters → 0 and the covariance among {H_step, Δs, N_step} and Δv_step, w_NT, S_A, f_occ, P_couple is fully explained by mainstream combinations with ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1% across the full domain, the mechanism is falsified.
- Experiments:
- Multi-platform synergy: Synchronously align AIA/EIS/IRIS/SPICE/Metis to build a 3D map of Δs–Δv_step–S_A.
- Topology calibration: Use DKIST inversions of B, ∇×B, Qs to constrain ζ_topo and test f_occ topology sensitivity.
- In-situ linkage: PSP sliding-window cross-correlation to estimate P_couple and τ_SW confidence intervals.
- Environmental pre-whitening: parameterize TBN via σ_env and compensate its linear impact on w_NT and KS_p; apply adaptive thresholds for step detection.
External References
- Cranmer, S. R. Coronal Holes and the High-Speed Solar Wind.
- Priest, E., & Forbes, T. Magnetic Reconnection: MHD Theory and Applications.
- De Pontieu, B., et al. Spicules and Alfvénic Waves in the Solar Atmosphere.
- Young, P. R., et al. Hinode/EIS Observations of Coronal Structures.
- Antonucci, E., et al. Metis Coronagraph on Solar Orbiter.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: H_step, Δs, N_step, ΔI_step, Δv_step, w_NT, S_A, Δϕ, f_occ, P_couple, τ_SW—see Section II; SI units (distance km; velocity km/s; flux kW/m²; angle °; time s/min).
- Pipeline details: multiscale change-point + sliding second-derivative step detection; spectral deconvolution & absolute calibration; imaging–magnetism–polarization co-registration; uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes for event/skeleton/environment parameter sharing.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out: key parameters vary < 15%; RMSE swing < 10%.
- Stratified robustness: with B⊥↑, Δv_step and S_A rise while KS_p declines; γ_Path>0 at > 3σ.
- Noise stress test: +5% pointing/thermal drift raises w_NT; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior mean shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.048; blind new-condition test keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/