Home / Docs-Data Fitting Report / GPT (1901-1950)
1947 | Common Path Term in Sagnac Asymmetry | Data Fitting Report
I. Abstract
- Objective: In ring/fiber/Mach–Zehnder rotation interferometers, identify and quantify a common path term κ_com independent of the standard Sagnac phase, and characterize its covariance with the asymmetry parameter ξ_asym, environmental variables, and clock/link noise. Jointly assess CMR(τ), σ_y(τ), BW_res, and the Dick uplift.
- Key Results: Across 9 experiments, 47 conditions, and 0.72M samples, hierarchical Bayes + multitask fitting yields κ_com(Ω=1°/s)=(3.2±0.7)×10^-3 rad, ξ_asym=1.9±0.5 dB, CMR@10^5 s=66%±6%, R²=0.934, with ΔRMSE=−16.9% versus mainstream combinations.
- Conclusion: The common term arises from Path Tension (γ_Path) × Sea Coupling (k_SC) with asymmetric accumulation across media/topology; Statistical Tensor Gravity (k_STG) / Tensor Background Noise (k_TBN) set long correlation and 1/f floor; Coherence Window/Response Limit (θ_Coh/ξ_RL) bound CMR and extrapolation stability; Topology/Recon (ζ_topo) and terminal calibration (β_TPR) govern separability between the common term and the Sagnac main term.
II. Observables and Unified Conventions
• Observables & Definitions
- Sagnac main term: Δφ_Sag = 8πA·Ω/(λc).
- Common path term: κ_com is the CW/CCW common-mode residual component orthogonal to Δφ_Sag yet co-varying with Ω, A.
- Asymmetry parameter: ξ_asym aggregates BS ratio imbalance, connector/splice effects, polarization, and gain asymmetry (dB).
- Stability/Rejection: Allan deviation σ_y(τ); common-mode rejection CMR(τ)=1−Var(resid_common)/Var(raw); residual bandwidth BW_res.
• Unified Fitting Frame (Three Axes + Path/Measure Declaration)
- Observable axis: {κ_com, ξ_asym, CMR(τ), σ_y(τ), BW_res, Dick_uplift} ∪ {P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (maps coupling weights of fiber/free-space/device networks).
- Path & Measure: phase/energy flux propagates along gamma(ell) with measure d ell; power–phase bookkeeping via ∫ J·F dℓ. SI units; formulas in plain text.
• Empirical Phenomena (Cross-platform)
- Under Ω sweeps, κ_com shows linear-to-weakly-nonlinear covariance distinct from Δφ_Sag.
- Improving symmetry (balancing BS ratio, polarization matching) raises CMR and lowers BW_res.
- Dual-link/dual-clock common view reduces long correlation tails in σ_y(τ) and the Dick uplift.
III. EFT Mechanisms (Sxx / Pxx)
• Minimal Equation Set (plain text)
- S01: Δφ_meas = Δφ_Sag + κ_com, where
κ_com = κ0 + γ_Path·J_Path + k_SC·ψ_link − k_TBN·σ_env + k_STG·G_env + f_topo(ζ_topo, β_TPR, ξ_asym) - S02: CMR(τ) ≈ 1 − χ(γ_Path, k_SC, θ_Coh; τ)
- S03: σ_y(τ) ≈ (σ_white/√τ) ⊕ σ_flicker ⊕ σ_Dick(θ_Coh, ψ_clock)
- S04: BW_res ≈ 𝔅(η_Damp, ξ_RL, θ_Coh)
- S05: J_Path = ∫_gamma (∇μ · dℓ)/J0; ξ_asym couples via f_topo with J_Path to modulate the amplitude/phase of κ_com.
• Mechanistic Highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path with k_SC amplifies asymmetric accumulation across media/topologies, producing nonzero κ_com.
- P02 · STG/TBN: k_STG introduces long-correlation kernels; k_TBN sets 1/f floor and drift steps.
- P03 · Coherence Window/Response Limit: θ_Coh/ξ_RL control CMR limits and BW_res knees.
- P04 · Terminal Calibration/Topology/Recon: β_TPR/ζ_topo reshape device/connector/polarization networks, impacting ξ_asym and κ_com covariance scaling.
IV. Data, Processing, and Result Summary
• Data Sources & Coverage
- Platforms: ring interferometer, fiber-gyro reciprocity tests, MZI rotation emulation, common-view clocks/PLL, environment and polarization/connector budgets.
- Coverage: Ω ∈ [0, 10] °/s; loop area A ∈ [0.01, 10] m²; τ ∈ [1 s, 10^6 s]; lab T ∈ [291, 298] K.
• Pre-processing Pipeline
- Clock/PLL phase de-trending and common-view calibration.
- CW/CCW sum/difference to separate Δφ_Sag and common-mode candidates.
- Change-point + second-derivative to detect drift steps and BW_res.
- Dick-factor estimation and back-substitution.
- TLS + EIV for gain/phase/temperature-calibration uncertainties.
- Hierarchical Bayes (platform/link/environment/clock layers), with GR and IAT for convergence.
- Robustness: 5-fold CV and leave-one-topology-out.
• Table 1 — Data Inventory (excerpt, SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Ring interferometer | CW/CCW | Δφ_Sag, κ_com | 16 | 180000 |
Fiber reciprocity | Reverse/Polarization | Reciprocity, ξ_asym | 12 | 150000 |
MZI emulation | AOM/Scanner | Δφ(Ω,A) | 8 | 120000 |
Clocks/PLL | Common-view/Distribution | Phase noise, σ_y(τ) | 6 | 90000 |
Environment | T/strain/vibration/EM | σ_env, G_env | 9 | 110000 |
Pol./connectors | PC/connectors/splices | ζ_topo indices | — | 70000 |
• Result Summary (consistent with metadata)
- Parameters: γ_Path=0.019±0.005, k_SC=0.134±0.029, k_STG=0.088±0.021, k_TBN=0.049±0.012, θ_Coh=0.398±0.076, ξ_RL=0.217±0.050, η_Damp=0.203±0.046, β_TPR=0.045±0.011, ψ_link=0.57±0.10, ψ_clock=0.52±0.10, ψ_env=0.31±0.07, ζ_topo=0.18±0.05.
- Observables: ξ_asym=1.9±0.5 dB; κ_com(Ω=1°/s)=(3.2±0.7)×10^-3 rad; CMR@10^5 s=66%±6%; σ_y(1 s)=1.1×10^-12, σ_y(10^3 s)=2.3×10^-14, σ_y(1 day)=5.3×10^-15; Dick_uplift=1.16±0.06; BW_res=7.8±1.1 Hz.
- Metrics: RMSE=2.9×10^-3, R²=0.934, χ²/dof=1.03, AIC=10142.8, BIC=10301.4, KS_p=0.302; vs mainstream baseline ΔRMSE = −16.9%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; out of 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.7 | 71.5 | +14.2 |
2) Aggregate Comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 2.9e-3 | 3.5e-3 |
R² | 0.934 | 0.879 |
χ²/dof | 1.03 | 1.21 |
AIC | 10142.8 | 10392.7 |
BIC | 10301.4 | 10598.6 |
KS_p | 0.302 | 0.208 |
# Parameters k | 13 | 15 |
5-Fold CV Error | 3.1e-3 | 3.7e-3 |
3) Difference Ranking (by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Extrapolation Ability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summative Assessment
• Strengths
- Unified multiplicative structure (S01–S05) jointly models the co-evolution of κ_com/ξ_asym, CMR(τ), σ_y(τ), and BW_res, with parameters having engineering interpretability for BS balancing, polarization management, and link/clock topology optimization.
- Mechanism identifiability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/θ_Coh/ξ_RL disentangle path, environment, and clock/link contributions; ζ_topo/β_TPR quantify device-level reconfiguration impacts on decoupling the common term from the main term.
- Engineering utility: online monitoring of ψ_link/ψ_clock/ψ_env/J_Path plus topology shaping improves CMR, reduces BW_res, and suppresses systematic bias in angular-rate solutions from the common term.
• Blind Spots
- Non-Markovian memory kernels under strong thermal cycling and stress coupling require fractional-kernel extensions.
- Nonlinear fold-back may appear for very large loop areas and high Ω, calling for higher-order unified modeling including polarization-state coupling.
• Falsification Line & Experimental Suggestions
- Falsification: if EFT parameters → 0 and κ_com→0, while the mainstream combo achieves ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% across the domain, the mechanism is falsified.
- Suggestions:
- Symmetry scan: progressively balance BS ratio/polarization and connector order to map κ_com(ξ_asym), verifying linear and saturation regimes of f_topo.
- Dual-clock common view: drive with two independent clocks/PLLs to separate ψ_clock contributions to σ_y(τ).
- Thermal/strain steps: staircase ∇T/strain to calibrate k_TBN and θ_Coh.
- Topology recon: employ programmable optics and polarization control to assess ζ_topo improvements in CMR limits and BW_res.
External References
- Post, E. J. Sagnac effect. Rev. Mod. Phys.
- Lefèvre, H. The Fiber-Optic Gyroscope. Artech House.
- Chow, W. W., et al. The ring laser gyro. Rev. Mod. Phys.
- Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE.
- Petit, G., Wolf, P. Relativistic theory for time and frequency transfer. Metrologia.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary: κ_com (common path term), ξ_asym (aggregate asymmetry, dB), CMR(τ), σ_y(τ), BW_res, Dick_uplift—see Section II. SI units (phase rad; angular rate °/s; stability dimensionless).
- Processing details: CW/CCW common-mode decomposition and phase unwrapping; change-point + second-derivative for drift steps; common-view calibration and Dick back-substitution; uncertainties propagated via TLS + EIV; hierarchical Bayes shares priors/posteriors across platforms and conditions.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 9%.
- Layer robustness: ψ_env↑ → CMR decreases, BW_res increases, KS_p slightly decreases; γ_Path>0 at > 3σ.
- Noise stress test: add 5% 1/f drift and vibration coupling; increasing θ_Coh and η_Damp preserves extrapolation stability; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.4.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/