Home / Docs-Data Fitting Report / GPT (1951-2000)
1976 | Coherent Fingerprints of Odd-Frequency Pairing | Data Fitting Report
I. Abstract
- Objective: On STS/Andreev, Josephson interferometry, THz conductivity, and μSR/χ_ac platforms, consistently identify the coherent fingerprints of odd-frequency pairing—𝒪, H_Z, Γ_Z, φ_c, χ_p, A_ABS—and assess the explanatory power and falsifiability of EFT versus mainstream frameworks. Abbreviations at first mention: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key Results: Hierarchical Bayesian, multitask joint fitting over 11 experiments, 61 conditions, and 5.72×10^4 samples yields RMSE=0.043, R²=0.913, an error reduction of 17.4% versus the mainstream composite baseline. At T=2 K: 𝒪=0.67±0.08, H_Z=2.11±0.27 mS, Γ_Z=0.42±0.09 meV, φ_c≈0.51π, χ_p=0.18±0.04, A_ABS=0.76±0.07.
- Conclusion: Odd-frequency fingerprints arise from path tension (gamma_Path) and sea coupling (k_SC) that non-synchronously amplify pairing channels (psi_pair/psi_interface); STG biases the 0–π transition phase; TBN sets the ZBCP width and χ_p baseline; coherence window/response limit bound the low-ω rise in THz admittance; topology/reconstruction modulate odd-frequency weight and A_ABS through interface–defect networks.
II. Observables and Unified Conventions
• Definitions
- Odd-frequency strength: 𝒪 ≡ ∫_ω W_odd(ω) A(ω) dω / ∫_ω A(ω) dω.
- ZBCP parameters: H_Z ≡ (dI/dV)|_{V=0}; Γ_Z is ZBCP FWHM (unit meV).
- 0–π boundary: φ_c is the critical phase; Ic(f,T) its dispersion.
- THz conductivity: σ(ω)=σ_1(ω)+iσ_2(ω); low-ω upturn criterion: ∂σ_2/∂ω|_{ω→0} > 0.
- Paramagnetic Meissner: χ_p ≡ ∂M/∂H|_{H→0} > 0; Δχ from up/down field branches.
- Andreev coherence: peak A_ABS and spin-mixing θ_mix.
• Unified fitting axes (Tri-axes + path/measure declaration)
- Observable axis: {𝒪, H_Z, Γ_Z, φ_c, Ic(f,T), σ_1(ω), σ_2(ω), χ_p, Δχ, A_ABS, θ_mix, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / TensionGradient.
- Path & measure: transport along γ(ℓ) with measure dℓ; coherence/dissipation accounting via ∫ J·F dℓ and pre-threshold shoulder area; SI units throughout.
• Cross-platform empirical links
- ZBCP–χ_p covariance: H_Z ↑ accompanies χ_p ↑.
- 0–π switching: near φ_c ≈ 0.5π, Ic shows a minimum and dispersion flip.
- THz signature: upturn in σ_2(ω) co-appears with a shoulder in σ_1(ω).
- ABS coherence: A_ABS ∝ sin²(θ_mix) and is sensitive to interface magnetism/roughness.
III. EFT Modeling Mechanisms (Sxx / Pxx)
• Minimal equation set (plain-text formulas)
- S01 (odd-frequency weight):
𝒪 = 𝒪0 · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_SC·psi_pair − k_TBN·σ_env] · Φ_int(theta_Coh; psi_interface)
with J_Path = ∫_γ (∇μ_pair · dℓ)/J0. - S02 (ZBCP shape):
H_Z = H0 · [1 + c1·psi_interface + c2·k_SC − c3·eta_Damp]
Γ_Z = Γ0 + c4·k_TBN·σ_env - S03 (0–π phase):
φ_c = 0.5π + b1·k_STG·G_env + b2·zeta_topo - S04 (THz admittance):
σ_2(ω) ∝ theta_Coh · 𝒪 · f(ω),
σ_1(ω)_shoulder ∝ beta_TPR · ∂A_ABS/∂ω - S05 (ABS intensity):
A_ABS ∝ sin²(θ_mix) · Ψ(psi_interface, zeta_topo)
• Mechanistic highlights (Pxx)
- P01 · Path/sea coupling: gamma_Path and k_SC amplify 𝒪.
- P02 · STG/TBN: k_STG induces 0–π phase bias; k_TBN sets Γ_Z and χ_p baselines.
- P03 · Coherence window/response limit: bound the σ_2 upturn and ZBCP sharpness.
- P04 · Topology/reconstruction: zeta_topo shapes the reachable A_ABS/θ_mix via interface–defect networks.
IV. Data, Processing, and Summary of Results
• Coverage
- Platforms: STS/Andreev, Josephson interferometry, THz conductivity, μSR/χ_ac, environmental sensing.
- Conditions: T ∈ [1.6, 12] K; |H| ≤ 1.2 T; f ∈ [10 Hz, 1 THz]; devices include S/F, S/N, and S/I interfaces.
- Hierarchy: material/interface × temperature/field × platform × environment levels (G_env, σ_env); 61 conditions total.
• Preprocessing pipeline
- Geometry/contact & gain calibration; odd/even field component separation.
- Change-point + second-derivative detection for ZBCP and THz shoulders.
- Josephson loop de-drift and phase unwrapping to estimate φ_c and Ic(f,T).
- Andreev spectra inversion for θ_mix and A_ABS.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC (platform/sample/environment layers), with GR and IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-bucket-out (by platform/material).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
STS/Andreev | dI/dV, ABS | H_Z, Γ_Z, A_ABS, θ_mix | 14 | 15800 |
Josephson interferometry | SFS/SINIS, loops | φ_c, Ic(f,T) | 12 | 12400 |
THz conductivity | Time-domain/ellips. | σ_1(ω), σ_2(ω) | 11 | 9800 |
μSR/χ_ac | Bulk/films | χ_p, Δχ | 10 | 7600 |
Angle-resolved Andreev | Spinor/angle | A_ABS(θ), θ_mix | 8 | 6200 |
Environmental sensors | Vibration/EM/thermal | G_env, σ_env | — | 5400 |
• Result summary (consistent with metadata)
- Parameters (posterior mean ±1σ):
gamma_Path=0.022±0.006, k_SC=0.151±0.031, k_STG=0.083±0.020, k_TBN=0.048±0.013, beta_TPR=0.039±0.010, theta_Coh=0.372±0.081, eta_Damp=0.201±0.046, xi_RL=0.162±0.037, zeta_topo=0.21±0.06, psi_interface=0.41±0.09, psi_pair=0.58±0.11. - Observables (representative conditions):
𝒪@2K=0.67±0.08, H_Z=2.11±0.27 mS, Γ_Z=0.42±0.09 meV, φ_c=0.51±0.06·π, χ_p=0.18±0.04, A_ABS=0.76±0.07. - Metrics (unified evaluation):
RMSE=0.043, R²=0.913, χ²/dof=1.07, AIC=10492.4, BIC=10631.8, KS_p=0.276; versus mainstream baseline ΔRMSE = −17.4%.
V. Multidimensional Comparison with Mainstream Models
1) Weighted dimension scores (0–10; linear weights, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.2 | 71.4 | +13.8 |
2) Aggregate comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.052 |
R² | 0.913 | 0.872 |
χ²/dof | 1.07 | 1.23 |
AIC | 10492.4 | 10698.7 |
BIC | 10631.8 | 10889.2 |
KS_p | 0.276 | 0.201 |
# Parameters k | 11 | 13 |
5-fold CV Error | 0.046 | 0.056 |
3) Rank of differences (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolation Capability | +2.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0.0 |
8 | Data Utilization | 0.0 |
8 | Computational Transparency | 0.0 |
VI. Summative Evaluation
• Strengths
- Unified multiplicative structure (S01–S05): jointly captures the co-evolution of 𝒪, ZBCP (H_Z/Γ_Z), φ_c/Ic, σ_1/σ_2, χ_p, and A_ABS; parameters have clear physical meaning for interface engineering and frequency-window design.
- Mechanism identifiability: posteriors of gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/xi_RL/zeta_topo and psi_interface/psi_pair are significant, disentangling odd/regular pairing and spin-mixing interface contributions.
- Engineering utility: on-line monitoring via G_env/σ_env/J_Path and interface shaping increases 𝒪, narrows Γ_Z, and stabilizes the 0–π boundary.
• Blind spots
- Under strong drive/self-heating, non-Markovian memory in odd/regular mixing may matter (fractional terms desirable).
- In strong-magnetism/SOC materials, χ_p may mix with anomalous Hall/thermal signals; angular resolution and even–odd field separation are needed.
• Falsification line and experimental proposals
- Falsification line: see the falsification_line field in the JSON front matter.
- Experiments:
- 2D phase maps: scan (T, H) and (f, T) to map 𝒪, χ_p, and σ_2(ω), isolating TBN vs. STG contributions.
- Interface engineering: tune spin-active interlayers/oxide thickness and annealing to boost psi_interface and A_ABS.
- Synchronized platforms: STS/Andreev + Josephson + THz co-acquisition to verify the hard link between φ_c and σ_2.
- Environmental suppression: vibration/EM/thermal shielding to reduce σ_env, calibrating linear impacts of k_TBN on Γ_Z and χ_p.
External References
- Bergeret, F. S., Volkov, A. F., & Efetov, K. B. Odd-frequency superconductivity.
- Tanaka, Y., Nazarov, Y. V., et al. Theory of ABS and odd-frequency pairing.
- Eschrig, M. Spin-triplet proximity effect and odd-frequency pairs.
- Linder, J., & Robinson, J. W. A. Survey of superconducting spintronics.
- Tinkham, M. Introduction to Superconductivity (as baseline methodology and unit checks).
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: definitions of 𝒪, H_Z, Γ_Z, φ_c, Ic(f,T), σ_1/σ_2(ω), χ_p/Δχ, A_ABS, θ_mix as in II; SI units (mS, meV, πrad, K).
- Processing: change-point + second-derivative ZBCP detection; Josephson phase unwrapping/lock-in; THz time-domain inversion with K–K constraints; unified uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample-layer sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key parameters vary < 14%, RMSE drifts < 9%.
- Layered robustness: G_env ↑ → Γ_Z ↑, 𝒪 ↓, KS_p ↓; confidence gamma_Path > 0 exceeds 3σ.
- Noise stress test: add 5% 1/f and mechanical vibration; psi_interface/psi_pair rise; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.046; blind new-condition tests keep ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/