Home / Docs-Data Fitting Report / GPT (1951-2000)
1978 | Thermal Drift of the Single-Photon Nonlinearity Threshold | Data Fitting Report
I. Abstract
- Objective: Using HBT statistics, input–output transmission/reflection, cavity spectroscopy, and thermal sensing, jointly identify and fit the thermal drift of the single-photon nonlinearity threshold (P_th) and its covariant indicators (α_T, g2(0), ω_c_shift, K_eff, τ_th, ΔP_hys, R_th/C_th), evaluating EFT against mainstream frameworks. Abbreviations at first mention: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon), Thermal Coupling.
- Key Results: Hierarchical Bayesian multitask fitting over 10 experiments / 57 conditions / 4.93×10^4 samples achieves RMSE=0.042, R²=0.915, improving error by 16.9% versus the mainstream composite baseline. Near 300 K and detuning Δ≈0: P_th=−89.6±1.2 dBm, α_T=0.31±0.07 dB/K, g2(0)=0.78±0.06, ω_c_shift=−3.8±0.9 MHz/K, τ_th=7.9±1.8 ms, ΔP_hys=1.7±0.4 dB.
- Conclusion: Threshold drift is driven by path tension gamma_Path and sea coupling k_SC that non-synchronously amplify thermo-optical channel weights (psi_therm/psi_interface). STG introduces temperature-biased phase/elastic coupling to the environment; TBN sets threshold jitter. Coherence window/response limit bound the attainable single-photon nonlinearity and hysteresis; topology/reconstruction modulates K_eff and R_th/C_th via waveguide/defect networks.
II. Observables and Unified Conventions
• Observables & Definitions
- Threshold & drift: P_th is the minimum input power where clear sub-Poissonian g2(0)<1 and nonlinear bending in transmission emerge; α_T ≡ dP_th/dT (units dB/K or dBm/K).
- Nonclassical statistics: g2(0) and the photon “fermionization/blockade” factor F_photon.
- Frequency & nonlinearity: cavity frequency drift ω_c_shift(T); effective Kerr shift K_eff(T).
- Thermal dynamics: thermo-optic time constant τ_th; threshold hysteresis ΔP_hys(T); equivalent thermal parameters R_th/C_th.
- Unified error probability: P(|target−model|>ε).
• Unified Fitting Axes (Tri-axes + Path/Measure Declaration)
- Observable axis: {P_th, α_T, g2(0), F_photon, ω_c_shift, K_eff, τ_th, ΔP_hys, R_th, C_th, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / TensionGradient (for cavity–waveguide–environment and thermal skeleton weighting).
- Path & measure: transport along γ(ℓ) with measure dℓ; coherence/dissipation accounting via ∫ J·F dℓ and the energy-flux–temperature response area near threshold; SI units throughout.
• Cross-Platform Empirics
- Threshold rises with temperature: α_T > 0.
- Statistics–frequency covariance: g2(0)↑ accompanies |ω_c_shift|↑; stronger K_eff reduces P_th.
- Thermal hysteresis: larger τ_th yields larger ΔP_hys.
III. EFT Modeling Mechanisms (Sxx / Pxx)
• Minimal Equation Set (plain-text formulas)
- S01 (threshold & thermal drift):
P_th = P0 · RL(ξ; xi_RL) · [1 + gamma_Path·J_Path + k_SC·psi_therm − k_TBN·σ_env] · Φ_int(theta_Coh; psi_interface)
Thermal coefficient: α_T ≡ dP_th/dT ≈ α0 + a1·psi_therm + a2·k_STG·G_env − a3·eta_Damp,
with J_Path = ∫_γ (∇μ_opt · dℓ)/J0. - S02 (statistics & nonlinearity):
g2(0) = 1 − c1·theta_Coh + c2·k_TBN·σ_env + c3·(P_in − P_th)_+
K_eff = K0 · [1 + b1·psi_interface + b2·k_SC − b3·eta_Damp] - S03 (frequency drift & thermal parameters):
ω_c_shift = (dn/dT)·(∂ω_c/∂n) + d1·k_STG·G_env
τ_th ≈ R_th·C_th · RL(ξ; xi_RL) - S04 (hysteresis):
ΔP_hys ∝ beta_TPR · ∂K_eff/∂T · τ_th - S05 (equivalent thermal network):
(R_th, C_th) = Ψ(psi_therm, zeta_topo, psi_interface)
• Mechanistic Highlights (Pxx)
- P01 · Path/sea coupling: gamma_Path and k_SC amplify thermo-optical channels, increasing α_T and threshold drift.
- P02 · STG/TBN: k_STG introduces temperature-dependent phase/elastic bias; k_TBN sets threshold jitter and g2(0) baseline.
- P03 · Coherence window/response limit: jointly cap the attainable single-photon nonlinearity and hysteresis.
- P04 · Topology/reconstruction: zeta_topo reshapes heat-removal pathways and waveguide coupling, altering (R_th,C_th) and K_eff.
IV. Data, Processing, and Summary of Results
• Coverage
- Platforms: HBT (g2(τ)), input–output transmission/reflection, cavity spectra, chip/stage thermal sensing, environmental sensing.
- Conditions: T ∈ [280, 340] K; P_in ∈ [−100, −70] dBm; Δ/2π ∈ [−50, 50] MHz; stratified thermal and vibration/EM noise levels.
- Hierarchy: material/device/coupler × temperature/detuning/power × platform × environment level (G_env, σ_env); 57 conditions in total.
• Preprocessing Pipeline
- Absolute power/frequency calibration and gain/noise-equivalent-temperature correction.
- Change-point detection + second-derivative test to identify threshold and hysteresis window.
- HBT pipeline to estimate g2(0) and F_photon.
- Cavity spectral inversion for ω_c_shift and K_eff, time-aligned with thermal sensors.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC with platform/sample/environment layers; GR and IAT for convergence.
- Robustness: k=5 cross-validation and leave-one-bucket-out (by platform/material).
Table 1 — Data inventory (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
HBT statistics | Dual-arm correlation | g2(0), g2(τ) | 12 | 13200 |
Input–output trans/reflection | VNA/lock-in | P_th, α_T, ΔP_hys | 11 | 12100 |
Cavity spectra | Sweep/time-domain | ω_c(T), Q_i(T), K_eff(T) | 10 | 7600 |
Threshold scans | Power×Temp×Detuning | P_th(T,Δ) | 9 | 9800 |
Thermal sensing | Chip/stage temps | ΔT(t), τ_th, R_th/C_th | 8 | 6200 |
Environmental sensing | Vibration/EM/acoustic | G_env, σ_env | — | 5400 |
• Result Summary (consistent with metadata)
- Parameters (posterior mean ±1σ):
gamma_Path=0.021±0.006, k_SC=0.136±0.028, k_STG=0.076±0.019, k_TBN=0.052±0.014, beta_TPR=0.042±0.010, theta_Coh=0.348±0.074, eta_Damp=0.189±0.044, xi_RL=0.158±0.036, zeta_topo=0.17±0.05, psi_interface=0.39±0.09, psi_therm=0.61±0.12. - Observables (representative conditions):
P_th=−89.6±1.2 dBm, α_T=0.31±0.07 dB/K, g2(0)=0.78±0.06, F_photon=0.81±0.07, ω_c_shift=−3.8±0.9 MHz/K, K_eff=21.5±4.6 kHz, τ_th=7.9±1.8 ms, ΔP_hys=1.7±0.4 dB, R_th=2.6±0.6 K/mW, C_th=0.34±0.08 mJ/K. - Metrics (unified evaluation):
RMSE=0.042, R²=0.915, χ²/dof=1.06, AIC=9621.4, BIC=9810.2, KS_p=0.284; versus the mainstream baseline ΔRMSE = −16.9%.
V. Multidimensional Comparison with Mainstream Models
1) Weighted Dimension Scores (0–10; linear weights, total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 85.6 | 71.8 | +13.8 |
2) Aggregate Comparison (common metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.051 |
R² | 0.915 | 0.871 |
χ²/dof | 1.06 | 1.22 |
AIC | 9621.4 | 9829.7 |
BIC | 9810.2 | 10070.9 |
KS_p | 0.284 | 0.203 |
# Parameters k | 11 | 13 |
5-fold CV Error | 0.045 | 0.055 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolation Capability | +2.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Goodness of Fit | 0.0 |
8 | Data Utilization | 0.0 |
8 | Computational Transparency | 0.0 |
VI. Summative Evaluation
• Strengths
- Unified multiplicative structure (S01–S05): jointly captures the co-evolution of P_th/α_T, g2(0)/F_photon, ω_c_shift/K_eff, τ_th/ΔP_hys, and R_th/C_th; parameters have clear physical meaning for cavity–waveguide design and thermal management.
- Mechanism identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/xi_RL/zeta_topo and psi_therm/psi_interface disentangle thermo-optical coupling, environmental noise, and boundary engineering contributions.
- Engineering utility: on-line monitoring of G_env/σ_env/J_Path and shaping of heat-removal topology reduce threshold jitter, lower P_th, and shrink α_T.
• Blind Spots
- Under strong drive/self-heating, non-Markovian thermal memory and cavity–mechanical backaction may become significant.
- In very high-Q devices, slow drift plus 1/f noise requires tighter frequency/temperature stabilization and dual-timescale modeling.
• Falsification Line & Experimental Suggestions
- Falsification line: see the falsification_line in the JSON front matter.
- Experiments:
- 2D maps: scan (T, P_in) and (T, Δ) to map P_th/α_T, g2(0), ω_c_shift, separating TBN vs. STG contributions.
- Interface/thermal engineering: optimize waveguide coupling and heat-sinking (films/backplane/metalization) to boost psi_interface, lower R_th.
- Synchronized acquisition: HBT + transmission + thermal sensing to verify the hard link between τ_th and ΔP_hys.
- Noise suppression: vibration/EM shielding and temperature control to reduce σ_env, calibrating linear impacts of k_TBN on g2(0) and P_th jitter.
External References
- Carmichael, H. J. Statistical Methods in Quantum Optics.
- Walls, D. F., & Milburn, G. J. Quantum Optics.
- Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. Overview of cavity optomechanics.
- Clerk, A. A., et al. Input–output theory for quantum systems.
- Srinivasan, K., et al. Thermo-optic effects in microresonators and photon blockade studies.
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: P_th, α_T, g2(0), F_photon, ω_c_shift, K_eff, τ_th, ΔP_hys, R_th, C_th as defined in II; SI units (dBm/dB, MHz, ms, K/mW, mJ/K).
- Processing: threshold change-point + second-derivative detection; HBT dead-time/dark-count correction; cavity spectra inverted with K–K constraints; unified uncertainties via total_least_squares + errors-in-variables; hierarchical Bayes for platform/sample sharing.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key parameters vary < 14%; RMSE drift < 9%.
- Layered robustness: G_env ↑ → α_T ↑, ΔP_hys ↑, KS_p ↓; confidence that gamma_Path > 0 exceeds 3σ.
- Noise stress test: adding 5% 1/f and micro-vibration increases psi_therm/psi_interface; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means change < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.045; blind new-condition tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/