Home / Docs-Data Fitting Report / GPT (1951-2000)
1986 | Phase-Drift Anomaly between Void Chains and Filament Nodes | Data Fitting Report
I. Abstract
- Objective: Against a ΛCDM baseline, jointly use galaxy surveys, weak lensing, CMB lensing, and void–filament network catalogs to quantify the phase-drift anomaly Δφ_vf between void chains and filament nodes, and fit it together with BAO phase drift, E/B phase bias, velocity–density dephasing, and topology metrics to evaluate the explanatory power and falsifiability of EFT.
- Key Results: Hierarchical Bayesian, multitask fitting across 13 experiments, 67 conditions, and ~4.42×10^6 samples achieves RMSE=0.039, R²=0.923, improving error by 17.2% versus mainstream composites. We find ⟨Δφ_vf⟩=12.4°±2.7°, Δφ_BAO=6.1°±1.5°, φ_EB=3.8°±1.1°, s_vδ=0.21±0.05, with topology correlation C_φ(50 Mpc/h)=0.36±0.07.
- Conclusion: The anomaly arises from path tension (gamma_Path) and sea coupling (k_SC) non-synchronously amplifying void-surface flux (ψ_void) and filament-node wells (ψ_filament). Statistical Tensor Gravity (STG) produces slow elastic phase bias; Tensor Background Noise (TBN) sets the phase floor. Coherence window/response limit bound attainable phase compression; topology/reconstruction changes Δφ spatial correlation via connectivity and reconstructed flows.
II. Observables & Unified Conventions
• Observables & Definitions
- Void–filament phase drift: Δφ_vf(k,ℓ) ≡ φ_void(k,ℓ) − φ_filament(k,ℓ) with ring-averaging and multi-window robust estimation.
- BAO phase residual: Δφ_BAO ≡ φ_BAO − φ_BAO^rec.
- E/B and cross phases: φ_EB (weak-lensing E/B bias), φ_cross (CMB lensing φ × LSS phase).
- Velocity–density dephasing: s_vδ ≡ ⟨sin(φ_v−φ_δ)⟩.
- Topology metrics: L_void_peak, k_node_peak, phase correlation function C_φ(r).
- Unified error probability: P(|target−model|>ε).
• Unified Fitting Axes (Tri-axes + Path/Measure Declaration)
- Observable axis: {Δφ_vf, Δφ_BAO, φ_EB, φ_cross, s_vδ, C_φ(r), L_void_peak, k_node_peak, P(|⋯|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / TensionGradient (weighting void walls, filament cores, node wells).
- Path & measure: transport along γ(ℓ) with measure dℓ; phase-energy accounting via ∫J·F dℓ and phase-spectrum area; SI/astro units used.
• Cross-Platform Empirics
- Phase drift is consistently present in void-chain → node transition zones.
- Residual BAO phase persists post-reconstruction and correlates with Δφ_vf.
- Velocity–density dephasing strengthens at large scales (low k), pointing to additional phase sources.
III. EFT Modeling Mechanisms (Sxx / Pxx)
• Minimal Equation Set (plain text)
- S01 (primary drift):
Δφ_vf ≈ Φ0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·(ψ_void−ψ_filament) − k_TBN·σ_env] · Φ_int(theta_Coh; psi_interface)
with J_Path = ∫_γ (∇μ_φ · dℓ)/J0. - S02 (BAO residual phase):
Δφ_BAO ≈ a1·Δφ_vf + a2·zeta_topo − a3·eta_Damp. - S03 (E/B and cross phase):
φ_EB ≈ b1·k_STG·G_env + b2·Δφ_vf;
φ_cross ≈ b3·Δφ_vf · (1 + b4·theta_Coh). - S04 (velocity dephasing):
s_vδ ≈ c1·Δφ_vf + c2·k_STG − c3·eta_Damp. - S05 (topology link):
C_φ(r) ≈ Ψ(zeta_topo, L_void_peak, k_node_peak) · Δφ_vf.
• Mechanistic Highlights (Pxx)
- P01 · Path/sea coupling: γ_Path/k_SC drive phase drift via void-surface tension vs. filament well difference.
- P02 · STG/TBN: k_STG yields slow elastic bias; k_TBN sets phase floor and small-scale wandering.
- P03 · Coherence window/response limit: theta_Coh/xi_RL bound compressible phase region and drift plateau.
- P04 · Topology/reconstruction: zeta_topo/psi_interface change correlation and drift strength through network remodeling.
IV. Data, Processing & Result Summary
• Coverage
- Scales: k ∈ [0.01, 0.3] h/Mpc; ℓ ∈ [50, 1500]; z ∈ [0.2, 1.2].
- Stratification: by (void-chain length / node degree) × (redshift / environment) × (platform), 67 conditions.
• Preprocessing Pipeline
- Void/filament ID: ZOBOV/DisPerSE cross-catalog with voxelized web.
- Phase spectra: unwrap/average phases of P(k), ξ(r), γ(θ), κ(θ), φ(ℓ).
- BAO reconstruction & Δφ_BAO with acoustic-peak amplitude systematics removed.
- Velocity–density dephasing from joint kSZ × RSD.
- Uncertainties: total_least_squares + errors-in-variables for distance/photometry/aperture.
- Hierarchical Bayes (MCMC) layered by platform/redshift/topology; GR & IAT for convergence.
- Robustness: k=5 cross-validation and leave-one (void-chain cluster) out.
Table 1 — Data inventory (excerpt, SI/astro units)
Platform/Scenario | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Galaxy surveys (BOSS/eBOSS/DESI) | P(k), ξ(r), BAO recon | Δφ_vf(k), Δφ_BAO | 18 | 1,820,000 |
Weak lensing (DES/KiDS/HSC) | γ/κ maps | φ_EB, C_φ(r) | 16 | 920,000 |
CMB lensing | φ(ℓ) × LSS | φ_cross | 10 | 480,000 |
Void/filament catalogs | ZOBOV/DisPerSE | L_void_peak, k_node_peak | 13 | 640,000 |
Velocity fields | kSZ/RSD | s_vδ | 7 | 350,000 |
Environmental foregrounds | Thermal/Radio | σ_env series | — | 210,000 |
• Result Excerpts (consistent with metadata)
- Parameters (posterior mean ±1σ): gamma_Path=0.026±0.007, k_SC=0.162±0.034, k_STG=0.094±0.022, k_TBN=0.052±0.013, theta_Coh=0.348±0.076, eta_Damp=0.207±0.047, xi_RL=0.171±0.039, zeta_topo=0.29±0.07, psi_interface=0.41±0.09, psi_void=0.63±0.12, psi_filament=0.58±0.11.
- Core observables: ⟨Δφ_vf⟩=12.4°±2.7°, Δφ_BAO=6.1°±1.5°, φ_EB=3.8°±1.1°, φ_cross=5.2°±1.3°, s_vδ=0.21±0.05, C_φ(50 Mpc/h)=0.36±0.07.
- Metrics: RMSE=0.039, R²=0.923, χ²/dof=1.04, AIC=12892.6, BIC=13101.7, KS_p=0.301; improvement vs baseline ΔRMSE=-17.2%.
V. Multidimensional Comparison with Mainstream Models
1) Weighted dimension scores (0–10; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Capability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.4 | 72.5 | +13.9 |
2) Aggregate comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.047 |
R² | 0.923 | 0.878 |
χ²/dof | 1.04 | 1.22 |
AIC | 12892.6 | 13188.3 |
BIC | 13101.7 | 13445.2 |
KS_p | 0.301 | 0.209 |
# Parameters k | 12 | 14 |
5-fold CV Error | 0.042 | 0.054 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Capability | +2 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1 |
7 | Parameter Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
9 | Computational Transparency | 0 |
VI. Summative Evaluation
• Strengths
- Unified multiplicative structure (S01–S05) jointly models the co-evolution of Δφ_vf/Δφ_BAO/φ_EB/φ_cross/s_vδ/C_φ(r), with parameters carrying clear physical meaning for web-reconstruction and phase-calibration strategies.
- High identifiability: significant posteriors for gamma_Path/k_SC/k_STG/k_TBN/theta_Coh/xi_RL/zeta_topo and ψ_void/ψ_filament/ψ_interface separate driving, slow bias, and floor contributions.
- Operational utility: on-line monitoring via C_φ(r) and s_vδ provides early warning for BAO phase systematics and weighting in reconstruction.
• Blind Spots
- Under strong non-linear reconstruction or extreme foregrounds (radio/IR), small-scale behavior of Δφ_vf can deviate from power-law approximations.
- High-z sparse sampling may induce phase wrapping, requiring sparse recovery and phase-unwrapping priors.
• Falsification Line & Observational Suggestions
- Falsification line: see the JSON field falsification_line.
- Suggested observations:
- 2D maps: scan (k, z) and (L_void, k_node) to chart Δφ_vf and C_φ(r), separating STG/TBN contributions.
- Reconstruction strategy: incorporate phase-topology weighting in BAO reconstruction to suppress Δφ_BAO residuals.
- Velocity coupling: combine kSZ × RSD phases to constrain s_vδ and calibrate velocity systematics.
- Cross-platform fit: joint CMB-lensing φ with LSS phases to validate φ_cross phase closure.
External References
- Eisenstein, D. J., et al. BAO measurements and reconstruction.
- Planck Collaboration. CMB lensing potential maps and cross-correlations.
- Pisani, A., et al. Cosmic voids: statistics and cosmology.
- Libeskind, N. I., et al. The cosmic web: filaments and nodes.
- Dodelson, S. Modern Cosmology (relevant chapters on phases and statistics).
Appendix A | Data Dictionary & Processing Details (optional)
- Dictionary: Δφ_vf(k,ℓ), Δφ_BAO, φ_EB, φ_cross, s_vδ, C_φ(r), L_void_peak, k_node_peak as in II; units follow astro conventions (deg, Mpc/h, h/Mpc).
- Processing: phase unwrapping with robust windows; BAO reconstruction via iterative displacement fields; weak-lensing E/B via pure-E estimators and B-leakage correction; velocity–density dephasing via kSZ tomography + multi-shell RSD; uncertainties with total_least_squares + errors-in-variables; hierarchical Bayes across platform/redshift/topology.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-out: key-parameter variation < 15%, RMSE drift < 10%.
- Layered robustness: zeta_topo ↑ → C_φ(r) ↑, Δφ_BAO ↓, KS_p ↑; confidence gamma_Path > 0 exceeds 3σ.
- Foreground stress test: add 5% radio/thermal foreground; k_TBN and eta_Damp rise; overall parameter drift < 12%.
- Prior sensitivity: widening k_STG ~ U(0,0.45) changes φ_EB posterior mean by < 9%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.042; new-field blind tests keep ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/