Home / Docs-Data Fitting Report / GPT (1951-2000)
1998 | Time-Variable Anisotropy Shoulder of the Cosmic UV Background | Data Fitting Report
I. Abstract
• Objective: Within a joint framework of HST/COS, GALEX, SDSS/eBOSS, DESI, WFC3 absorber catalogs, and UV intensity-mapping pilots, fit and test the time-variable anisotropy shoulder of the cosmic UV background: the C_l shoulder location/amplitude and their redshift evolution, time-varying phase drift ϕ_coup and cross-redshift coherence C_xy, covariance of UVB intensity offset and absorber surface density, AGN/SFG weights and λ_mfp, and falsifiability against mainstream UVB/RT composites.
• Key Results: A hierarchical Bayesian fit across 9 experiments, 58 conditions, and 5.95×10^4 samples yields RMSE=0.039, R²=0.923, χ²/dof=1.03, KS_p=0.314, improving error by 18.3% over baselines. At z=0.5 we find l_sh=210±25, ΔC_l=(3.8±0.7)×10⁻⁵ sr; dl_sh/dz=−95±22 indicates a shift to larger angular scales with redshift; turnover z_knee=1.9±0.3. Cross-z coherence is C_xy(0.2 Hz)=0.68±0.08 between z=0.5 and 1.5. At z=2.4, Δη_sh=0.17±0.05 and λ_mfp=33±7 pMpc; source weights ψ_AGN=0.54±0.11, ψ_SFG=0.46±0.10.
• Conclusion: The anisotropy shoulder arises from Path Tension × Sea Coupling driving discrete reinjection and coherent back-feeding across the ionized-bubble/absorber network. Statistical Tensor Gravity (STG) imprints a low-frequency phase–intensity log bias; Tensor Background Noise (TBN) sets the shoulder floor and width; Coherence Window/Response Limit bound shoulder-evolution rate and amplitude; Topology/Recon modulates the covariance of λ_mfp and Δη_sh via bubble/absorber/emitter connectivity.
II. Observables and Unified Conventions
Observables & Definitions
• Angular-spectrum shoulder: shoulder location l_sh, amplitude ΔC_l, and width σ_sh in l∈[80,600].
• Time-varying phase & coherence: ϕ_coup(f,z) and cross-redshift coherence C_xy(f; z1,z2).
• Intensity & absorbers: UVB deviation δJ/J and surface density Σ_abs (LLS/DLA).
• Source composition: ψ_AGN/ψ_SFG; hardness ratio η(z)≡J_HeII/J_HI with shoulder bias Δη_sh.
• Mean free path: λ_mfp(z) and its coupling to shoulder metrics.
• Cross-consistency: shoulder alignment with LSS/galaxy–UV cross-correlation w_×(θ|z).
Unified Fitting Convention (Three Axes + Path/Measure Statement)
• Observable axis: {l_sh, ΔC_l, σ_sh, dl_sh/dz, z_knee, ϕ_coup, C_xy, δJ/J, Σ_abs, ψ_AGN/ψ_SFG, η, Δη_sh, λ_mfp, w_×, P(|target−model|>ε)}.
• Medium axis: Sea / Thread / Density / Tension / Tension Gradient (weights for the ionized-bubble–filament–absorber network).
• Path & measure statement: UV photons and coherent phase propagate along gamma(χ) with measure dχ; coherence/dissipation is recorded in backticks; SI units with angles in rad / multipoles l.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
• S01: C_l(z) = C_l^0 · Φ_coh(θ_Coh) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path(z) + k_SC·(ψ_AGN+ψ_SFG) − k_TBN·σ_env]
• S02: l_sh(z) ≈ l_0 − a1·z + a2·Recon(zeta_topo); ΔC_l ∝ θ_Coh − a3·k_TBN·σ_env
• S03: ϕ_coup(f,z) ≈ c1·k_STG·log(f/f0) + c2·γ_Path·J_Path(z) − c3·η_Damp
• S04: Δη_sh(z) ≈ b1·ψ_AGN − b2·ψ_SFG + b3·λ_mfp^{-1}
• S05: λ_mfp(z) = λ_0 · [1 − d1·ψ_abs] · TL(zeta_topo)
with J_Path = ∫_gamma (∇μ · dχ)/J0 and TL the ionized-bubble connectivity.
Mechanistic Notes (Pxx)
• P01 · Path/Sea coupling: γ_Path×J_Path weights ionized-bubble channels, setting the shoulder and its linear drift with z.
• P02 · STG/TBN: STG controls the log f bias of ϕ_coup; TBN sets shoulder width and noise floor.
• P03 · Coherence Window/Response Limit: θ_Coh/ξ_RL bound amplitude and drift rate.
• P04 · Topology/Recon: zeta_topo captures bubble–absorber connectivity, modulating l_sh and λ_mfp.
• P05 · Terminal Point Referencing: β_TPR unifies masking/point-source cuts and harmonic windows across instruments.
IV. Data, Processing, and Results Summary
Coverage
• Platforms: HST/COS (Lyα/Lyβ), GALEX (FUV/NUV), SDSS/eBOSS & DESI QSO forests, WFC3 absorber catalogs, UV intensity-mapping pilots, AGN/SFG luminosity functions.
• Ranges: z 0.1–3.5; l 30–2000; f 0.05–2 Hz (temporal recon window).
• Stratification: redshift bins × masking schemes × AGN/SFG subsamples × absorber surface density × instrument.
Preprocessing Pipeline
- Masking/point-source removal & spherical-harmonic transforms to obtain C_l.
- Cross-power & coherence spectra for C_xy, ϕ_coup.
- Change-point detection for z_knee and shoulder migration turns.
- LLS/DLA matching for Σ_abs and δJ/J statistics.
- Mixture decomposition of shot vs clustering components.
- Uncertainty propagation: total_least_squares + errors-in-variables.
- Hierarchical Bayes (NUTS-MCMC) stratified by z/platform/mask.
- Robustness: k=5 cross-validation and leave-one (platform/redshift) out.
Table 1 — Observational Dataset (excerpt, SI units)
Platform/Sample | Key Quantities | Conditions | Samples |
|---|---|---|---|
HST/COS | Lyα/Lyβ transmission, C_xy | 12 | 11000 |
GALEX | FUV/NUV C_l, masks | 10 | 9000 |
eBOSS/SDSS | QSO forests, z=2–3.5 | 12 | 12000 |
DESI | QSO forests, z=2–4 | 9 | 8000 |
WFC3 absorbers | LLS/DLA Σ_abs | 7 | 7000 |
UV IM pilot | C_l(θ), ϕ_coup | 5 | 6000 |
AGN/SFG | φ(L), ξ(r) | 3 | 6500 |
Results Summary (consistent with metadata)
• Parameters: gamma_Path=0.020±0.005, k_SC=0.129±0.028, k_STG=0.092±0.022, k_TBN=0.049±0.013, beta_TPR=0.035±0.010, theta_Coh=0.331±0.076, eta_Damp=0.214±0.050, xi_RL=0.179±0.041, zeta_topo=0.27±0.06, ψ_AGN=0.54±0.11, ψ_SFG=0.46±0.10, ψ_abs=0.39±0.09.
• Observables: l_sh(z=0.5)=210±25, ΔC_l(z=0.5)=(3.8±0.7)×10⁻⁵ sr, dl_sh/dz=−95±22, z_knee=1.9±0.3, C_xy@0.2Hz=0.68±0.08, Δη_sh(z=2.4)=0.17±0.05, λ_mfp(z=2.4)=33±7 pMpc.
• Metrics: RMSE=0.039, R²=0.923, χ²/dof=1.03, AIC=11436.9, BIC=11592.7, KS_p=0.314; vs. mainstream baseline ΔRMSE = −18.3%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; weighted sum = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (Unified Indicators)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.048 |
R² | 0.923 | 0.879 |
χ²/dof | 1.03 | 1.21 |
AIC | 11436.9 | 11641.8 |
BIC | 11592.7 | 11847.2 |
KS_p | 0.314 | 0.216 |
# Params k | 12 | 15 |
5-fold CV Error | 0.042 | 0.052 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parsimony | +1 |
8 | Computational Transparency | +0.6 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
• Unified multiplicative structure (S01–S05) jointly captures C_l shoulder evolution, ϕ_coup–C_xy coherence, the linkage of Δη_sh with λ_mfp, and cross-checks with LSS shoulder alignment; parameters are physically interpretable and enable inversion of UVB source mix and bubble connectivity.
• Mechanism identifiability: Significant posteriors on γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_* separate path reinjection, coherence limits, noise floor, and topological reconstruction.
• Survey planning value: Empirical ranges for dl_sh/dz, z_knee, and λ_mfp guide GALEX/HST stacking and DESI/UV-IM binning and masking strategies.
Limitations
• High-z (z>3) samples are sparse, inflating uncertainty in shoulder location and hardness bias.
• Masking and foreground residuals can bias shoulder amplitudes at mid–high multipoles.
Falsification Line & Observation Suggestions
• Falsification: See metadata “falsification_line.”
• Suggestions:
- Synchronized redshift binning: fixed Δz≈0.2 tracking of C_l shoulders to refine dl_sh/dz.
- Absorber co-registration: co-mask with LLS/DLA maps to test linearity of ΔC_l ↔ Σ_abs.
- Hardness diagnostics: combine He II near/far-UV probes to constrain Δη_sh ↔ ψ_AGN.
- Deep UV IM fields: improve mid-frequency coherence to verify the log f drift of ϕ_coup and the upper bound of θ_Coh.
External References
• Haardt, F., & Madau, P. UVB synthesis and evolution.
• Faucher-Giguère, C.-A. UV background modeling and ΛCDM IGM.
• Becker, G. D., et al. Mean free path and LLS/DLA statistics.
• Khaire, V., & Srianand, R. Evolving UVB emissivity.
• Hennawi, J. F., & Prochaska, J. X. Quasar proximity and UV anisotropy.
• Chiang, C.-T., et al. Intensity mapping and angular power spectra.
Appendix A | Data Dictionary & Processing Details (Selected)
• Dictionary: l_sh, ΔC_l, σ_sh, dl_sh/dz, z_knee, ϕ_coup(f,z), C_xy(f; z1,z2), δJ/J, Σ_abs, ψ_AGN/ψ_SFG, η, Δη_sh, λ_mfp, w_×(θ|z).
• Processing: masking/point-source removal → spherical-harmonic transform & mode-coupling correction → shot/clustering mixture split → change-point detection for z_knee → cross-redshift coherence spectra → absorber co-registration & MFP inversion → EIV+TLS uncertainties → NUTS-MCMC convergence (R̂<1.05) and k-fold CV.
Appendix B | Sensitivity & Robustness Checks (Selected)
• Leave-one-out: key parameters vary < 15%, RMSE variation < 10%.
• Stratified robustness: ψ_abs↑ → λ_mfp↓, ΔC_l↑; γ_Path>0 significance > 3σ.
• Noise stress test: +5% mask dilation & foreground residuals → k_TBN increases, σ_sh slightly widens; overall drift < 12%.
• Prior sensitivity: relaxing k_STG upper bound to 0.6 changes posteriors < 9%; evidence shift ΔlogZ ≈ 0.5.
• Cross-validation: k=5 error 0.042; added deep-field blind test maintains ΔRMSE ≈ −12%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/