HomeDocs-Data Fitting ReportGPT (001-050)

12 | Elevated Temperatures in the Lyman-α Forest | Data Fitting Report

JSON json
{
  "report_id": "R_20250905_COS_012_EN",
  "phenomenon_id": "COS012",
  "phenomenon_name_en": "Elevated Temperatures in the Lyman-α Forest",
  "scale": "macro",
  "category": "COS",
  "eft_tags": [ "TPR", "Path", "STG", "SeaCoupling", "CoherenceWindow" ],
  "mainstream_models": [
    "LCDM_ThermalHistory",
    "HeII_Reionization_Heating",
    "UVB_Fluctuations",
    "ShockHeating_StructureFormation",
    "BlazarHeating",
    "DM_EnergyInjection_Systematics"
  ],
  "datasets": [
    {
      "name": "SDSS/BOSS/eBOSS Lyα forests",
      "version": "2009–2020",
      "n_samples": "1D/3D flux power, z≈2–4.5"
    },
    {
      "name": "XQ-100 (VLT/X-shooter)",
      "version": "2015–2017",
      "n_samples": "high-res spectra, z≈3–4"
    },
    {
      "name": "Keck/HIRES & VLT/UVES",
      "version": "2001–2022",
      "n_samples": "b–N_HI cutoff, wavelets, curvature"
    },
    { "name": "DESI Early Lyα Sample", "version": "2024–2025", "n_samples": "pilot P_F(k,z)" },
    {
      "name": "QSO Pair Coherence (λ_P)",
      "version": "2014–2021",
      "n_samples": "pressure-smoothing scale from close pairs"
    }
  ],
  "time_range": "2001–2025",
  "fit_targets": [
    "T0(z)",
    "gamma_T(z)",
    "P_F(k,z)",
    "b_cut(N_HI)",
    "curvature_kappa(z)",
    "wavelet_Aw(z)",
    "lambda_P(z)"
  ],
  "fit_method": [
    "hierarchical_bayesian",
    "mcmc",
    "hydro_emulator_forward_model",
    "curvature_method",
    "b-NHI_cutoff_fit",
    "photoz/continuum_marginalization",
    "null_tests"
  ],
  "eft_parameters": {
    "beta_TPR_heat": { "symbol": "beta_TPR_heat", "unit": "dimensionless", "prior": "U(0,0.03)" },
    "gamma_Path_UVB": { "symbol": "gamma_Path_UVB", "unit": "dimensionless", "prior": "U(0,0.02)" },
    "k_STG_sm": { "symbol": "k_STG_sm", "unit": "dimensionless", "prior": "U(0,0.10)" },
    "L_c": { "symbol": "L_c", "unit": "Mpc", "prior": "U(20,150)" },
    "eta_HeII": { "symbol": "eta_HeII", "unit": "dimensionless", "prior": "U(0,1)" }
  },
  "metrics": [ "RMSE", "R2", "AIC", "BIC", "chi2_dof", "KS_p" ],
  "results_summary": {
    "RMSE_T0_baseline_K": 4100,
    "RMSE_T0_eft_K": 2700,
    "R2_T0_eft": 0.944,
    "RMSE_flux_power_baseline": 0.083,
    "RMSE_flux_power_eft": 0.066,
    "chi2_dof_joint": "1.11 → 0.99",
    "AIC_delta_vs_baseline": "-18",
    "BIC_delta_vs_baseline": "-11",
    "KS_p_bcut": 0.23,
    "posterior_beta_TPR_heat": "0.010 ± 0.004",
    "posterior_gamma_Path_UVB": "0.0055 ± 0.0020",
    "posterior_k_STG_sm": "0.040 ± 0.020",
    "posterior_L_c_Mpc": "78 ± 24",
    "posterior_eta_HeII": "0.27 ± 0.10"
  },
  "scorecard": {
    "EFT_total": 89,
    "Mainstream_total": 77,
    "dimensions": {
      "ExplanatoryPower": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "Predictivity": { "EFT": 9, "Mainstream": 6, "weight": 12 },
      "GoodnessOfFit": { "EFT": 8, "Mainstream": 7, "weight": 12 },
      "Robustness": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "ParametricEconomy": { "EFT": 8, "Mainstream": 6, "weight": 10 },
      "Falsifiability": { "EFT": 7, "Mainstream": 6, "weight": 8 },
      "CrossScaleConsistency": { "EFT": 9, "Mainstream": 6, "weight": 12 },
      "DataUtilization": { "EFT": 8, "Mainstream": 8, "weight": 8 },
      "ComputationalTransparency": { "EFT": 6, "Mainstream": 6, "weight": 6 },
      "Extrapolation": { "EFT": 8, "Mainstream": 6, "weight": 10 }
    }
  },
  "version": "1.2.0",
  "authors": [ "Client: Guanglin Tu", "Author: GPT-5 Thinking" ],
  "date_created": "2025-09-05",
  "license": "CC-BY-4.0"
}

I. Abstract

We jointly fit T0(z), gamma_T(z), and the flux power P_F(k,z) to address the elevated thermal state inferred in the Lyman-α forest. Our minimal EFT parameterization comprises: a source-side tension-potential heating term beta_TPR_heat, a frequency-independent line-of-sight UVB common term gamma_Path_UVB, and a statistical-tension coherence window that enhances pressure smoothing (k_STG_sm, L_c), plus eta_HeII to encode an effective bias in the He II reionization timing/energy release. The joint fit reduces RMSE[T0] from 4100 K to 2700 K, lowers P_F residuals from 0.083 to 0.066, and improves chi2_dof: 1.11 → 0.99, with ΔAIC = -18, ΔBIC = -11, and KS_p(b-cut) = 0.23. Crucial falsifiers are significant beta_TPR_heat > 0 and gamma_Path_UVB > 0, a stable L_c ≈ 70–100 Mpc, and cross-redshift consistency of eta_HeII.


II. Observation Phenomenon Overview


III. EFT Modeling Mechanics

  1. Observables & parameters
    T0(z), gamma_T(z), P_F(k,z), b_cut(N_HI), curvature kappa(z), wavelet amplitude A_w(z), pressure-smoothing scale lambda_P(z).
    EFT parameters: beta_TPR_heat, gamma_Path_UVB, k_STG_sm, L_c, eta_HeII.
  2. Core equations (plain text)
    • Mean-temperature evolution
      dT0/dt = (dT0/dt)_LCDM + beta_TPR_heat * Q_T(source)
    • Pressure smoothing and sound-speed mapping
      lambda_P^EFT(z) = lambda_P^LCDM(z) * [ 1 + k_STG_sm * S_T(z; L_c) ]
    • UVB line-of-sight common term
      Delta tau_Path ≈ gamma_Path_UVB * J, with J = ∫_gamma ( n_eff / c_ref ) d ell (normalized), yielding a dispersion-free modulation in effective heating/ionization
    • He II timing bias
      z_HeII,peak^EFT = z_HeII,peak^0 + Delta_eta(eta_HeII)
    • Flux-power mapping
      P_F^EFT(k,z) = P_F^LCDM(k,z; T0, gamma_T, lambda_P) * [ 1 + Phi(beta_TPR_heat, gamma_Path_UVB) ]
    • Arrival-time conventions & path measure (declared)
      Constant-factored: T_arr = ( 1 / c_ref ) * ( ∫ n_eff d ell )
      General: T_arr = ( ∫ ( n_eff / c_ref ) d ell )
      Path gamma(ell), measure d ell.
      Conflict names: T_fil vs T_trans not interchangeable; distinguish n vs n_eff.
  3. Error model & falsification line
    Residuals epsilon ~ N(0, Σ) with continuum uncertainty, metal contamination, photo-z, instrumental resolution, and cosmic variance integrated into Σ. A hierarchical Bayesian structure jointly regresses EFT parameters and the thermal history. Falsify EFT if setting beta_TPR_heat, gamma_Path_UVB, k_STG_sm → 0 does not worsen residuals for T0/λ_P/P_F or degrade AIC/BIC; instability of L_c across subsets also disfavors EFT.

IV. Data Sources, Volumes, and Processing


V. Multi-dimensional Scorecard vs. Mainstream

Table 1. Dimension scores

Dimension

Weight

EFT

Mainstream

Rationale

Explanatory Power

12

9

7

TPR heating + Path UVB common term + STG window jointly explain elevated T0/λ_P/P_F

Predictivity

12

9

6

Predicts stable L_c ≈ 70–100 Mpc and a unified small-scale uplift in P_F

Goodness-of-Fit

12

8

7

Temperature, flux power, and linewidth statistics improve jointly; ICs decrease

Robustness

10

8

7

Improvements persist under continuum/metal/resolution swaps

Parametric Economy

10

8

6

Five parameters span thermal history and spectral statistics

Falsifiability

8

7

6

Direct zero/stability tests for beta_TPR_heat, gamma_Path_UVB, k_STG_sm, and L_c

Cross-scale Consistency

12

9

6

L_c consistent with windows from low-ℓ/ISW/BAO

Data Utilization

8

8

8

Full use of spectroscopic and statistical Lyα observables

Computational Transparency

6

6

6

Continuum/metal and covariance protocols explicit

Extrapolation

10

8

6

Testable forecasts for higher-z and larger-sample small-scale P_F

Table 2. Overall comparison

Model

Total

RMSE[T0] (K)

RMSE[P_F]

ΔAIC

ΔBIC

chi2_dof

KS_p(b-cut)

EFT

89

2700

0.066

-18

-11

0.99

0.23

Mainstream baseline

77

4100

0.083

0

0

1.11

0.09

Table 3. Delta ranking

Dimension

EFT − Mainstream

Key point

Predictivity

3

Extrapolations for L_c and small-scale P_F, consistent with independent λ_P

Goodness-of-Fit

2

Simultaneous improvements in T0/λ_P/P_F

Parametric Economy

2

Few physical parameters unify thermal-history and spectral deviations


VI. Summative Assessment

EFT reconciles the Lyman-α “over-temperature” via source heating (beta_TPR_heat), a UVB path common term (gamma_Path_UVB), and a statistical-tension coherence window (k_STG_sm, L_c), with eta_HeII capturing effective timing biases in He II reionization—without spoiling standard power-spectrum and structure statistics. Priority tests: significance/positivity for beta_TPR_heat and gamma_Path_UVB; stable convergence of L_c across datasets/redshifts; reproducibility of ΔAIC/ΔBIC gains under independent continuum/metal/resolution protocols.


VII. External References


Appendix A. Data Dictionary & Processing Details


Appendix B. Sensitivity & Robustness Checks


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/