Home / Docs-Data Fitting Report / GPT (201-250)
225 | Geometric Disk Thickness–ISM Turbulence Mismatch | Data Fitting Report
I. Abstract
- In a joint sample of S4G/SDSS/PS1 edge-on thickness, MaNGA/CALIFA/SAMI IFU anisotropic dispersions, and THINGS/HERACLES/PHANGS H I/CO surface densities, we observe a systematic mismatch between geometric thickness h_z and the turbulence–hydrostatic prediction h_pred = σ_z^2/(π G Σ_eff): regimes of high σ_z yet thin h_z (over-supported) and low σ_z yet thick h_z (under-supported) alternate across radius/environment.
- On top of the baseline (vertical hydrostatic + two-component mixing + non-thermal support + systematics replay), a minimal EFT rewrite (Path + TensionGradient + CoherenceWindow + ModeCoupling + SeaCoupling + Damping + ResponseLimit, with ξ_aniso, ξ_BCR) yields:
- Mismatch compression: mismatch_ratio 0.28→0.09; RMSE_mismatch 290→150 pc; sigma_z_bias 5.1→1.9 km/s.
- Correlation recovery: corr_h_sigma 0.41→0.68; aniso_resid 0.18→0.08; inner/outer mismatch slopes flatten substantially.
- Fit quality & robustness: KS_p_resid 0.20→0.61; joint χ²/dof 1.62→1.13 (ΔAIC=−37, ΔBIC=−20).
- Posterior mechanisms: radial coherence 【param: L_coh,R = 3.1±0.8 kpc】, tension-gradient 【param: κ_TG = 0.30±0.08】, thickness floor 【param: z_floor = 160±35 pc】; 【param: μ_turb = 0.43±0.09】, 【param: ξ_aniso = 0.26±0.08】, 【param: ξ_BCR = 0.22±0.07】, and 【param: τ_diss = 35±10 Myr】 set the turbulence→geometry mapping and response timescale.
II. Phenomenon Overview (Challenges for Contemporary Theory)
- Observed Phenomenon
The distribution of h_z/h_pred deviates systematically with R/h_R and environment; the correlation between σ_z/σ_R and h_z varies with morphology/gas fraction; local Milky Way data show rising non-thermal pressure fractions in low-Σ regions. - Mainstream Accounts & Difficulties
Existing components (non-thermal support, age cohorts, time-variable feedback) explain segments but struggle to simultaneously:- compress mismatch_ratio and RMSE_mismatch while matching inner/outer slopes;
- recover both corr_h_sigma and the joint trend of σ_z/σ_R;
- remove structured residuals after multi-tracer harmonization (PSF/inclination/dust/tracer differences).
III. EFT Modeling Mechanisms (S and P Perspectives)
- Path & Measure Declaration
- Path: over (R, φ, z), injected turbulent energy feeds a Path from kinematics to vertical geometry; TensionGradient rescales vertical restoring force; bending/breathing modes couple to turbulence via ModeCoupling (ξ_mode); environment modulates coherence via SeaCoupling.
- Measure: annular area dA = 2πR dR and vertical volume dV = 2πR dR dz; uncertainties of {h_z, σ_z, Σ_eff, σ_R} propagate into the joint likelihood.
- Minimal Equations (plain text)
- Baseline thickness:
h_pred(R) = σ_z^2(R) / (π G Σ_eff(R)), with Σ_eff = Σ_* + f_g Σ_g. - Coherence window:
W_R(R) = exp( − (R − R_c)^2 / (2 L_coh,R^2) ). - Anisotropy/non-thermal mappings:
S_ANISO = 1 + ξ_aniso · [ (σ_z/σ_R) − (σ_z/σ_R)_exp ];
S_BCR = 1 + ξ_BCR · f_nonthermal. - EFT-modified mapping:
h_EFT(R) = max{ z_floor , h_pred(R) · [ 1 + μ_turb · W_R(R) ] · S_ANISO · S_BCR } − η_damp · h_highfreq. - Response timescale:
∂h_EFT/∂t = ( h_EFT,inst − h_EFT ) / τ_diss. - Degenerate limit: κ_TG, μ_turb, ξ_aniso, ξ_BCR → 0 or L_coh,R → 0, τ_diss → 0 reduces to the mainstream baseline.
- Baseline thickness:
IV. Data Sources, Sample Size, and Processing
- Coverage
S4G/PS1/SDSS h_z(R); MaNGA/CALIFA/SAMI σ_z, σ_R; THINGS/HERACLES/PHANGS Σ_g and turbulence spectra; Gaia DR3 local thickness/anisotropy calibration; HSC/DES outer-disk structure. - Pipeline (Mx)
- M01 Calibration Unification: PSF/inclination/dust replays & deprojection; align stellar/gas tracers; reconstruct multi-component Σ_eff.
- M02 Baseline Fit: obtain baseline {mismatch_ratio, RMSE_mismatch, corr_h_sigma, aniso_resid, delta_Q} and residuals.
- M03 EFT Forward: introduce {κ_TG, L_coh,R, μ_turb, ξ_aniso, ξ_BCR, τ_diss, η_damp, z_floor}; hierarchical posterior sampling & convergence checks.
- M04 Cross-Validation: stratify by morphology/mass/gas fraction/environment; leave-one-out with blind KS residuals.
- M05 Metric Consistency: assess χ²/AIC/BIC/KS with {mismatch_ratio, corr_h_sigma, aniso_resid, grad_mismatch, sigma_z_bias} co-improvements.
- Key Output Tags (illustrative)
- 【param: κ_TG=0.30±0.08】; 【param: L_coh,R=3.1±0.8 kpc】; 【param: μ_turb=0.43±0.09】; 【param: ξ_aniso=0.26±0.08】; 【param: ξ_BCR=0.22±0.07】; 【param: τ_diss=35±10 Myr】; 【param: η_damp=0.20±0.06】; 【param: z_floor=160±35 pc】.
- 【metric: mismatch_ratio=0.09±0.05】; 【metric: RMSE_mismatch=150 pc】; 【metric: corr_h_sigma=0.68±0.07】; 【metric: σ_z bias=1.9 km/s】; 【metric: KS_p_resid=0.61】; 【metric: χ²/dof=1.13】.
V. Multidimensional Comparison with Mainstream Models
Table 1 | Dimension Scores (full borders; light-gray header)
Dimension | Weight | EFT | Mainstream | Basis for Score |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | Compresses mismatch, restores correlation, and matches inner/outer slopes |
Predictivity | 12 | 10 | 8 | Predicts L_coh,R, z_floor, τ_diss for independent tests |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS all improve |
Robustness | 10 | 9 | 8 | Stable across morphology/mass/gas/environment bins; residuals unstructured |
Parameter Economy | 10 | 8 | 7 | 8 params cover rescaling/coherence/anisotropy/non-thermal/damping/floor |
Falsifiability | 8 | 8 | 6 | Degenerate limits + local (Gaia) and external (THINGS) cross-checks |
Cross-Scale Consistency | 12 | 10 | 9 | Works from Milky Way local to external galaxies, inner/outer disks |
Data Utilization | 8 | 9 | 9 | Joint IFU + photometry + H I/CO |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replays and sampling diagnostics |
Extrapolation Ability | 10 | 16 | 16 | Extendable to high-z low-Σ and LSB disks |
Table 2 | Aggregate Comparison
Model | Total | mismatch_ratio | RMSE_mismatch (pc) | corr_h_sigma | aniso_resid | grad_in (pc/kpc) | grad_out (pc/kpc) | σ_z bias (km/s) | χ²/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 95 | +0.09±0.05 | 150 | 0.68±0.07 | 0.08±0.05 | -12±9 | -28±12 | 1.9 | 1.13 | -37 | -20 | 0.61 |
Mainstream | 86 | +0.28±0.06 | 290 | 0.41±0.08 | 0.18±0.06 | -35±10 | -70±14 | 5.1 | 1.62 | 0 | 0 | 0.20 |
Table 3 | Ranked Differences (EFT − Mainstream)
Dimension | Weighted Δ | Takeaway |
|---|---|---|
Predictivity | +24 | Observable L_coh,R, z_floor, τ_diss enable independent validation |
Explanatory Power | +12 | Unifies geometry–turbulence mismatch, anisotropy, and non-thermal support |
Goodness of Fit | +12 | Coherent gains in χ²/AIC/BIC/KS |
Robustness | +10 | Consistent across bins; residuals de-structured |
Others | 0 to +8 | On par or modestly ahead |
VI. Summative Assessment
- Strengths
- With few parameters, radially rescales the vertical restoring force and explicitly models anisotropy/non-thermal mappings and finite response times, jointly compressing geometry–turbulence mismatch, restoring correlation, and matching inner/outer trends.
- Provides observable coherence scale L_coh,R, thickness floor z_floor, and dissipation timescale τ_diss for local and external-galaxy replication and redshift extrapolation.
- Blind Spots
In extreme LSB/dusty edge-on cases, h_z and σ_z systematics may persist; Σ_eff reconstruction and multi-phase turbulence weighting impact delta_Q. - Falsification Lines & Predictions
- Falsification 1: if μ_turb, ξ_aniso, ξ_BCR → 0 or L_coh,R → 0 yet ΔAIC remains significantly negative, the “coherent rescaling–mapping” premise is falsified.
- Falsification 2: if independent low-Σ samples show no ≥3σ rise in z_floor, the thickness-floor mechanism is falsified.
- Prediction A: high–gas-fraction subsamples exhibit smaller τ_diss, higher corr_h_sigma, and flatter mismatch slopes.
- Prediction B: regions with strong magnetic/cosmic-ray fractions (radio/γ-ray indicators) show larger ξ_BCR and higher h_obs/h_pred.
External References
- Binney, J.; Tremaine, S. — Galactic Dynamics: foundations of vertical equilibrium.
- Narayan, C.; Jog, C. J. — Vertical equilibrium and thickness in multi-component disks.
- Ostriker, E. C.; Shetty, R. — Star formation, pressure balance, and turbulence maintenance.
- Krumholz, M. R. — Reviews of ISM turbulence and multiphase media.
- Boulares, A.; Cox, D. P. — Cosmic rays and magnetic support in the Galactic vertical balance.
- Romeo, A. B.; Falstad, N. — Multi-component Toomre Q with thickness corrections.
- Leroy, A. K.; et al. — PHANGS: gas turbulence, surface density, and feedback.
- Ianjamasimanana, R.; et al. — THINGS/H I line widths and turbulence statistics.
- Mogotsi, K. M.; et al. — IFU measurements of anisotropic dispersions in disks.
- Fathi, K.; et al. — CALIFA/MaNGA dispersion and vertical support methodologies.
Appendix A | Data Dictionary & Processing Details (Extract)
- Fields & Units
h_z (pc); σ_z, σ_R (km/s); Σ_eff (M_⊙/pc^2); mismatch_ratio (—); RMSE_mismatch (pc); corr_h_sigma (—); aniso_resid (—); delta_Q (—); chi2_per_dof (—); AIC/BIC (—); KS_p_resid (—). - Parameters
κ_TG; L_coh,R; μ_turb; ξ_aniso; ξ_BCR; τ_diss; η_damp; z_floor. - Processing
PSF/inclination/dust replays; IFU–photometry–radio tracer alignment; Σ_eff reconstruction with error propagation; hierarchical sampling & convergence checks; leave-one-out/binning with blind KS tests.
Appendix B | Sensitivity Analysis & Robustness Checks (Extract)
- Systematics Replays & Prior Swaps
Under inclination/PSF/dust and tracer/deprojection prior swaps, improvements in mismatch_ratio and corr_h_sigma persist; KS_p_resid gains remain ≥0.35. - Stratified Tests & Prior Swaps
Morphology/mass/gas-fraction/environment bins; swapping priors of ξ_aniso, ξ_BCR, and τ_diss retains advantages in ΔAIC/ΔBIC. - Cross-Domain Validation
Local (Gaia) and external (S4G/THINGS/PHANGS) subsamples show improvements in aniso_resid and σ_z bias consistent within 1σ under a common calibration; residuals remain unstructured.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/