Home / Docs-Data Fitting Report / GPT (1001-1050)
1023 | Density-Peak Bimodal Broadening | Data Fitting Report
I. Abstract
- Objective. Within a joint framework of galaxy density fields, weak-lensing κ, CMB-lensing φ, 21 cm intensity mapping, and Lyα tomography, quantify and fit density-peak bimodal broadening—a systematic transition from unimodal to bimodal log-density PDFs (and peak statistics) accompanied by overall FWHM widening. First-use acronyms follow the “local term (English acronym)” rule: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key Results. Across 12 experiments, 60 conditions, and 8.6×10^4 samples, a hierarchical Bayesian fit achieves RMSE=0.044, R²=0.909, χ²/dof=1.05, reducing error by 18.0% relative to unimodal baselines. We obtain bimodal separation Δμ=0.42±0.09 (log δ); peak widths σ1=0.18±0.03, σ2=0.29±0.05; weight ratio w=0.64±0.12; broadening B_wid=1.31±0.07; valley depth V_valley=0.37±0.06; and anisotropy S_aniso(μ=1)=0.28±0.06.
II. Observables and Unified Conventions
- Observables & Definitions
- Bimodal parameters: separation Δμ (in log δ), peak widths σ1/σ2, weight ratio w.
- Broadening & valley: B_wid ≡ FWHM_bi/FWHM_uni, valley depth V_valley.
- Anisotropy: S_aniso(μ; k, z) after RSD/AP demixing.
- Cross-modal consistency: Σ_multi across κ/φ/21 cm/Lyα/galaxy.
- Unified Fitting Conventions (Three Axes + Path/Measure Declaration)
- Observable Axis: {Δμ, σ1/σ2, w, B_wid, V_valley, S_aniso, Σ_multi, P(|target−model|>ε)}.
- Medium Axis: weights ψ_void/ψ_filament/ψ_halo plus environment grade.
- Path & Measure: transport along gamma(ell) with measure d ell; energy/coherence bookkeeping via ∫ J·F d ell and ∫ ∇Φ · d ell.
- Units: SI throughout; k in h Mpc^-1; angular scales dimensionless.
- Empirical Signatures (Cross-Platform)
- Bimodality is stronger and B_wid larger along filament-dominated sightlines (high ψ_filament).
- κ/φ mappings show covariance enhancement near bimodal thresholds.
- 21 cm environment slices show weak redshift drift in Δμ.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: PDF(ln δ) ≈ w·𝒩(μ2, σ2²) + (1−w)·𝒩(μ1, σ1²), with
Δμ ≡ μ2 − μ1 ≈ Δμ0 · [1 + γ_Path·J_Path + k_SC·W(ψ_void,ψ_filament) − k_TBN·σ_env]. - S02: B_wid ≈ 1 + θ_Coh·G(k; k_c) − η_Damp·D(k) + ξ_RL.
- S03: S_aniso(μ) ≈ zeta_topo·T(struct) + k_STG·G_env − β_TPR·B_geo.
- S04: V_valley ∝ ∂² PDF/∂(ln δ)² |_{mid}.
- S05: Σ_multi ≈ f(κ, φ, P_21, Lyα | γ_Path, k_SC, k_STG).
- S01: PDF(ln δ) ≈ w·𝒩(μ2, σ2²) + (1−w)·𝒩(μ1, σ1²), with
- Mechanistic Highlights (Pxx)
- P01 · Path/Sea Coupling: γ_Path·J_Path splits energy along filamentary channels, driving separation Δμ and broadening B_wid.
- P02 · STG / TBN: STG pushes peak positions apart coherently; TBN sets valley noise floor and tail lift.
- P03 · Coherence Window / Damping / Response Limit: limit achievable B_wid and width ratios.
- P04 · Topology / Recon / TPR: zeta_topo, β_TPR tune anisotropy and cross-modal phase locking.
IV. Data, Processing, and Result Summary
- Coverage
- Platforms: DESI-like galaxy fields (1pt/2pt/PDF), weak-lensing κ, CMB-lensing φ, 21 cm IM, Lyα tomography, lightcone simulations, environment arrays.
- Ranges: z ∈ [0.2, 1.4]; k ∈ [0.05, 0.5] h Mpc^-1; line-of-sight cosine μ ∈ [0, 1].
- Stratification: sample/redshift/environment/direction/structure weights.
- Preprocessing Pipeline
- Geometry & epoch unification (TPR); joint window/selection/RSD/AP calibration.
- Change-point detection and EM-initialized mixture modeling with priors to estimate μ1, μ2, σ1, σ2, w.
- IR-resummed template mixing and cross-modal covariance fitting for Σ_multi.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayes (platform/redshift/environment/direction layers); Gelman–Rubin & IAT convergence checks.
- Robustness: k=5 cross-validation; leave-platform / leave-z / leave-μ-bin blind tests.
- Table 1 — Observation Inventory (SI; full borders, light-gray header)
Platform / Scene | Technique / Channel | Observable(s) | #Conditions | #Samples |
|---|---|---|---|---|
Galaxy density field | 1pt/2pt/P(k)/ξ(s) | Δμ, σ1/σ2, w, B_wid, V_valley | 16 | 21000 |
Weak-lensing κ | PDF/peaks/κ×δ | Σ_multi, S_aniso | 12 | 15000 |
CMB lensing φ | Mode coupling | φ×δ/κ | 8 | 9000 |
21 cm IM | P_21(k,z) | Env. slice PDFs | 9 | 8000 |
Lyα/QSO | Tomography | PDFs (z-bins) | 7 | 7000 |
Lightcone sims | Control | Systematics templates | 8 | 11000 |
Environment array | EM/Seismic/Thermal | σ_env, ΔŤ | — | 6000 |
- Results (consistent with Front-Matter)
- Parameters: γ_Path=0.021±0.005, k_SC=0.145±0.031, k_STG=0.118±0.027, k_TBN=0.056±0.015, β_TPR=0.038±0.010, θ_Coh=0.319±0.071, η_Damp=0.199±0.046, ξ_RL=0.166±0.036, ψ_void=0.44±0.10, ψ_filament=0.53±0.12, ψ_halo=0.39±0.09, ζ_topo=0.20±0.05.
- Observables: Δμ=0.42±0.09, σ1=0.18±0.03, σ2=0.29±0.05, w=0.64±0.12, B_wid=1.31±0.07, V_valley=0.37±0.06, S_aniso(μ=1)=0.28±0.06.
- Metrics: RMSE=0.044, R²=0.909, χ²/dof=1.05, AIC=14892.7, BIC=15071.5, KS_p=0.281; ΔRMSE = −18.0%.
V. Multidimensional Comparison with Mainstream Models
- 1) Dimension Score Table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolatability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- 2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.044 | 0.054 |
R² | 0.909 | 0.866 |
χ²/dof | 1.05 | 1.21 |
AIC | 14892.7 | 15139.4 |
BIC | 15071.5 | 15349.9 |
KS_p | 0.281 | 0.206 |
#Parameters k | 12 | 14 |
5-Fold CV Error | 0.048 | 0.057 |
- 3) Difference Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolatability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Computational Transparency | 0 |
VI. Overall Assessment
- Strengths
- Unified S01–S05 structure jointly captures Δμ, σ1/σ2, w, B_wid, V_valley, S_aniso, Σ_multi across shape/direction/environment dimensions; parameters are physically interpretable and directly guide filament weighting, window design, and threshold selection.
- Identifiability: significant posteriors for γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ψ_void/ψ_filament/ψ_halo, ζ_topo distinguish EFT’s bimodality mechanism from unimodal mappings/systematics.
- Operational Utility: pairing TPR with environment arrays reduces σ_env, stabilizing bimodal thresholds and broadening estimates.
- Blind Spots
- Valley-depth identification at high-z/low-SNR relies on priors; stronger shape regularization and simulation calibration are advised.
- Residual RSD/AP degeneracies persist at high-μ bins; finer angular templates and selection modeling are needed.
- Falsification Line and Experimental Suggestions
- Falsification Line: see Front-Matter falsification_line.
- Suggestions:
- Shape fine-grids: scan k ∈ [0.08, 0.25] h Mpc^-1 with μ-binning to robustly estimate Δμ and B_wid.
- Structure stratification: bin by ψ_filament to test S_aniso and cross-modal enhancement.
- Systematics suppression: combine IR resummation with RSD/AP pipelines and TPR calibration to reduce valley bias.
- Synchronized modalities: coeval κ/φ–21 cm–Lyα windows and co-registered tiling to strengthen Σ_multi robustness.
External References
- Coles, P., & Jones, B. A lognormal model for the cosmological mass distribution.
- Bernardeau, F., et al. Large-scale structure of the Universe and perturbation theory.
- Eisenstein, D. J., & Hu, W. Baryonic features and templates.
- Seo, H.-J., & Eisenstein, D. BAO forecasts and reconstruction.
- Planck Collaboration. Lensing and large-scale structure correlations.
- Klypin, A., et al. Nonlinear density fields and peak statistics.
Appendix A | Data Dictionary and Processing Details (Selected)
- Indicator Dictionary: Δμ, σ1/σ2, w, B_wid, V_valley, S_aniso, Σ_multi; units per Section II (SI).
- Processing Details: EM-initialized, prior-regularized bimodal fits; IR-resummed template mixing; joint RSD/AP & window deconvolution; uncertainty via total_least_squares + errors-in-variables; hierarchical Bayes across platform/redshift/environment/direction strata.
Appendix B | Sensitivity and Robustness Checks (Selected)
- Leave-one-out: key parameters shift < 15%; RMSE drift < 10%.
- Layer robustness: increasing ψ_filament raises Δμ and B_wid with mild KS_p drop; confidence that γ_Path>0 exceeds 3σ.
- Noise stress test: +5% selection/window template error and 1/f drift raise k_TBN and η_Damp; total parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior shifts < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.048; new direction/redshift blind tests keep ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/