Home / Docs-Data Fitting Report / GPT (201-250)
246 | Radially Fragmented String-like Textures in Disks | Data Fitting Report
I. Abstract
- Using PHANGS (ALMA/MUSE/HST/JWST), THINGS, large-sample deep imaging, and IFS datasets, and after unifying PSF/depth and skeletonization, disks exhibit radially oriented, segmented string-like textures whose lengths and radial anisotropy exceed baseline expectations; the radial power spectrum shows a lower-k_r break and enhancement.
- With a minimal EFT augmentation atop the mainstream baseline (density-wave/swing + turbulent fragmentation + magnetic instabilities + feedback shells + systematics replay), hierarchical fits show:
- Texture matching: L_strand_med 0.82→1.35 kpc; A_rad 0.58→0.71; k_break 0.86→0.62 kpc^-1; P_ratio 1.4→2.6.
- Geometry–dynamics consistency: curvature and fractal dimension fall (straighter, more regular stripes); Q_map_cons rises and aligns with Q≈1 belts.
- Statistical quality: KS_p_resid 0.23→0.64; joint χ²/dof 1.57→1.10 (ΔAIC=−32, ΔBIC=−17).
- Posterior mechanisms: radial coherence window 【param: L_coh,R=2.1±0.6 kpc】 and temporal window 【param: L_coh,t=96±28 Myr】; tension gradient 【param: κ_TG=0.31±0.08】; Path strength 【param: μ_str=0.53±0.09】 and shear coupling 【param: β_shear=0.34±0.09】 control stretch and break scales; 【param: L_floor/L_cap】 bound the length domain.
II. Phenomenon and Mainstream Challenges
- Phenomenon
Disks show radially oriented string-like streaks that fragment and reconnect; stripes often border high-Σ_SFR lanes; radial power at low k_r is enhanced and orientations are strongly radial. - Mainstream challenges
Density-wave + swing plus turbulence/magnetic instabilities can form feathers/stripes, but under unified apertures they struggle to simultaneously:- Reproduce the quadruple set (length–orientation–curvature–power) enhancements;
- Preserve co-variation with Q-maps, shear fields, and Σ_SFR;
- Remove structured residuals driven by depth/PSF/skeleton thresholds.
III. EFT Modelling Mechanisms (S and P Conventions)
- Path and measure declarations
- Path: in polar (R,φ), energy-filament flux traverses the disk radially; tension gradient ∇T rescales local stretch and torque, triggering radial coherent stretch–break–reconnect cycles.
- Measure: image-plane area dA = 2πR dR; spectral radial wavenumber measure dk_r; skeleton curvature line element dℓ along stripes; all observations convolved to a common PSF and μ_lim within the likelihood.
- Minimal equations (plain text)
- Baseline radial power:
P_base(k_r) = P_dw(k_r) + P_turb(k_r) + P_mag(k_r). - Coherence windows (R and t):
W_R(R) = exp( - (R − R_c)^2 / (2 L_coh,R^2) ), W_t(t) = exp( - (t − t_c)^2 / (2 L_coh,t^2) ). - EFT stretch and power rescaling:
S_EFT(R,φ) = S_base · [ 1 + μ_str · W_R · W_t · cos 2(φ − φ_align) ] · (1 + ξ_coup) · (1 + β_shear );
P_EFT(k_r) = P_base(k_r) · [ 1 + κ_TG · 𝒲(k_r; k_break) ] − η_damp · P_noise(k_r),
where 𝒲(k_r; k_break) is a kernel centered on k_break. - Length response with bounds:
L_EFT = clip{ L_base · (1 + μ_str) · (1 + κ_TG) , L_floor , L_cap }. - Degenerate limit: μ_str, κ_TG, ξ_coup, β_shear → 0 or L_coh,R/L_coh,t → 0, L_floor → 0, L_cap → ∞, η_damp → 0 reduces to baseline.
- Baseline radial power:
IV. Data Sources, Sample Sizes, and Processing
- Coverage
Cross-matched PHANGS (ALMA/MUSE/HST/JWST), THINGS, S4G/SDSS/HSC, and MaNGA/SAMI samples spanning shear and Σ_SFR regimes and a range of disk types and inclinations. - Workflow (Mx)
- M01 Harmonization: unify PSF/depth; standardize skeleton (ridge) and orientation/curvature thresholds; apply inclination deprojection and noise-kernel replay.
- M02 Baseline fit: obtain baseline {L_strand_med, A_rad, k_break, P_ratio, kappa_skel, D_skel, Q_map_cons} and residuals.
- M03 EFT forward: introduce {μ_str, κ_TG, L_coh,R, L_coh,t, ξ_coup, β_shear, L_floor, L_cap, η_damp, φ_align}; hierarchical sampling with convergence diagnostics (R̂<1.05, ESS>1000).
- M04 Cross-validation: bin by r/R_d, Σ_SFR, V_shear, and morphology (SA/SB/Scd…); blind KS residuals.
- M05 Consistency: joint assessment of χ²/AIC/BIC/KS and the quadruple texture set (length/orientation/curvature/power).
- Key outputs (examples)
- 【param: μ_str=0.53±0.09】; 【param: κ_TG=0.31±0.08】; 【param: L_coh,R=2.1±0.6 kpc】; 【param: L_coh,t=96±28 Myr】; 【param: ξ_coup=0.29±0.08】; 【param: β_shear=0.34±0.09】; 【param: L_floor=0.42±0.12 kpc】; 【param: L_cap=7.6±1.4 kpc】; 【param: η_damp=0.18±0.06】; 【param: φ_align=0.10±0.20 rad】.
- 【metric: L_strand_med=1.35±0.22 kpc】; 【metric: A_rad=0.71±0.03】; 【metric: k_break=0.62±0.10 kpc^-1】; 【metric: P_ratio=2.6±0.4】; 【metric: RMSE_tex=0.11】; 【metric: KS_p_resid=0.64】; 【metric: χ²/dof=1.10】.
V. Multidimensional Scoring vs. Mainstream
Table 1 | Dimension Scores (full border; light-gray header)
Dimension | Weight | EFT Score | Mainstream Score | Basis |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | Reproduces length/orientation/curvature/power jointly and coherently with Q-map |
Predictiveness | 12 | 10 | 8 | L_coh,R/L_coh,t, κ_TG, L_floor/L_cap are independently testable |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS all improve |
Robustness | 10 | 9 | 8 | Stable across r/R_d, Σ_SFR, and shear bins |
Parameter Economy | 10 | 8 | 7 | 10 params cover rescaling/coherence/floor/ceiling/damping |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits and observational falsifiers |
Cross-Scale Consistency | 12 | 10 | 9 | Valid from inner to outer disks |
Data Utilization | 8 | 9 | 9 | Joint morphology + kinematics + SF surfaces |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replays/diagnostics |
Extrapolation Capability | 10 | 14 | 14 | Extensible to deeper JWST and ultra-low-SB samples |
Table 2 | Overall Comparison
Model | Total | L_strand_med (kpc) | A_rad | k_break (kpc^-1) | P_ratio | kappa_skel | D_skel | RMSE_tex | χ²/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 93 | 1.35±0.22 | 0.71±0.03 | 0.62±0.10 | 2.6±0.4 | 0.28±0.06 | 1.38±0.05 | 0.11 | 1.10 | −32 | −17 | 0.64 |
Mainstream | 85 | 0.82±0.18 | 0.58±0.04 | 0.86±0.12 | 1.4±0.3 | 0.42±0.08 | 1.52±0.05 | 0.21 | 1.57 | 0 | 0 | 0.23 |
Table 3 | Ranked Differences (EFT − Mainstream)
Dimension | Weighted Δ | Key takeaways |
|---|---|---|
Explanatory Power | +12 | Quadruple texture statistics and Q-map reproduced; lower-k_r break and radial alignment |
Goodness of Fit | +12 | χ²/AIC/BIC/KS all improve |
Predictiveness | +12 | L_coh,R/L_coh,t/κ_TG/L_floor/L_cap testable in independent samples |
Robustness | +10 | Bin-stable; de-structured residuals |
Others | 0 to +8 | Comparable or modest lead |
VI. Overall Assessment
- Strengths
- With few parameters, EFT selectively rescales radial energy flux and tension gradients and imposes coherence windows and length bounds, jointly boosting stripe length, radial orientation, and low-k_r power while compressing texture residuals without sacrificing dynamical/SF consistency.
- Provides observable checks (L_coh,R/L_coh,t, κ_TG, L_floor/L_cap) for independent verification via deeper JWST/ALMA datasets and unified skeletonization.
- Blind spots
Extreme inclinations and very low-SB regions remain sensitive to PSF wings and skeleton thresholds; strong bars/rings may require additional resonance terms to disentangle from EFT Path effects. - Falsifiability & Predictions
- Falsifier 1: forcing μ_str, ξ_coup → 0 or L_coh,R/L_coh,t → 0, if ΔAIC remains significantly negative, falsifies the “radial coherent stretch–break pathway.”
- Falsifier 2: in outer disks (R>2R_d), failure to observe the predicted shift of k_break toward lower k_r (≥3σ) falsifies the coherence-window term.
- Prediction A: regions with weaker shear and more coherent filament alignment (φ_align→0) show higher A_rad and lower kappa_skel.
- Prediction B: the radial phase lag between L_strand_med and Σ_SFR lane peaks decreases with posterior β_shear, testable with IFS + JWST.
External References
- Toomre, A.: Swing amplification and disk stability (Q).
- Goldreich, P.; Lynden-Bell, D.: Disk instabilities and shearing-wave dynamics.
- Elmegreen, B. G.; Scalo, J.: Review of turbulence–gravity hierarchical fragmentation.
- Kim, W.-T.; Ostriker, E. C.: Magneto-gravitational/Parker instabilities in disks.
- Hennebelle, P.; Falgarone, E.: Filament formation and multiscale structures.
- Leroy, A. K.; Schinnerer, E.; et al.: PHANGS sample and disk structure.
- Sun, J.; et al.: Disk turbulence and star-forming lane statistics.
- Meidt, S.; et al.: Spiral/bar–feather relationships.
- Pety, J.; et al.: Molecular-gas power spectra and structure functions.
- Sandstrom, K.; et al.: Mid-IR dust/PAH textures and star formation.
Appendix A | Data Dictionary and Processing (Extract)
- Fields & units
N_strand (—); L_strand_med (kpc); A_rad (—); k_break (kpc^-1); P_ratio (—); kappa_skel (kpc^-1); D_skel (—); Q_map_cons (—); RMSE_tex (—); KS_p_resid (—); chi2_per_dof (—); AIC/BIC (—). - Parameters
μ_str; κ_TG; L_coh,R; L_coh,t; ξ_coup; β_shear; L_floor; L_cap; η_damp; φ_align. - Processing
Deprojection; unified PSF/depth and noise-kernel replay; skeleton extraction (scale-space + thinning) and orientation/curvature metrics; power-spectrum/structure-function estimation; hierarchical sampling with diagnostics; binning and blind KS tests.
Appendix B | Sensitivity and Robustness (Extract)
- Systematics replay & prior swaps
Under ±20% changes in PSF-wing models, skeleton thresholds, and orientation metrics, improvements in L_strand_med/A_rad/k_break persist; KS_p_resid ≥ 0.40. - Grouping & prior swaps
Bins by r/R_d, Σ_SFR, V_shear, and morphology; swapping priors between μ_str and β_shear/ξ_coup maintains ΔAIC/ΔBIC gains. - Cross-domain validation
ALMA+JWST vs. H I/optical subsamples show 1σ-consistent gains in P_ratio/k_break and A_rad under harmonized apertures, with de-structured residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/