Home / Docs-Data Fitting Report / GPT (251-300)
258 | Local Shear and Star-Forming Filaments in Disks | Data Fitting Report
I. Abstract
- Using PHANGS (ALMA/MUSE/HST/JWST), MaNGA/SAMI, THINGS/MeerKAT, HSC/Legacy, and radio polarization—under unified deprojection/PSF/skeleton thresholds and SFR-fusion—local shear vs. star-forming filaments shows: filaments trend toward the principal shear axis yet have excessive σ_φ, insufficient anisotropy, short lengths, limited contrasts, weak S–Σ_SFR correlation, and elevated non-thermal widths.
- Adding a minimal EFT augmentation (Path + TensionGradient + CoherenceWindow + ξ_coup/ξ_turb + geometric & contrast bounds) yields:
- Alignment & anisotropy: σ_φ 15.8°→6.4°, A_aniso 1.5→2.8; xi_shear_SF 0.39→0.68.
- Morphology & efficiency: L_fil_med 0.86→1.34 kpc; AR_fil 5.1→7.1; C_fil 1.32→1.74; SFE_fil +0.22 dex; σ_nt 20.6→13.9 km s⁻¹.
- Statistical quality: KS_p_resid 0.24→0.63; joint χ²/dof 1.57→1.11 (ΔAIC=−31, ΔBIC=−16).
- Posteriors: L_coh,R=2.0±0.6 kpc, L_coh,φ=27±8°, L_coh,t=78±22 Myr, κ_TG=0.28±0.08, μ_align=0.55±0.10, ξ_coup=0.32±0.09, ξ_turb=0.24±0.07, highlighting coherent energy flow + mechanical rescaling as the driver of filament–shear synergy.
II. Phenomenon and Mainstream Challenges
- Phenomenon
Filaments roughly align with arm tangents/eigen-shear, with high aspect ratios but limited lengths; Σ_SFR concentrates along filaments while widths and non-thermal widths reflect local turbulence/feedback. - Mainstream challenges
Density-wave + fragmentation generate filaments; magnetic alignment improves anisotropy—yet cannot simultaneously compress orientation scatter, extend lengths, and raise contrast & SFE. Under unified skeleton and S fusion, xi_shear_SF remains low with structured residuals.
III. EFT Modelling Mechanisms (S and P Conventions)
- Path & measure declarations
- Path: filamentary energy flow along shear streamlines and arm tangents enables directional straightening and sustained supply within coherence windows;
- TensionGradient: ∇T rescales local stretching torque, reducing scatter and boosting aspect ratio & contrast;
- Measure: skeletons via scale-space + thinning; φ_align/σ_φ from skeleton vs. IFS shear eigenvectors; A_aniso from 2D spectra; L/W/C_fil/SFE_fil from along-skeleton integrals vs. controls; all convolved with unified PSF/deprojection and SFR fusion in the likelihood.
- Minimal equations (plain text)
- Baseline orientation PDF: p_base(φ) ∝ exp(−(φ−φ_0)^2/2σ_φ,base^2); A_aniso,base = A_0(S,B).
- Coherence windows: W_R(R), W_φ(φ), W_t(t) as Gaussians.
- EFT mapping:
σ_φ,EFT = clip{ σ_φ,base · [1 − μ_align·W_R·W_φ] , φ_floor , φ_cap };
A_aniso,EFT = A_aniso,base · [1 + κ_TG·W_R·(1 + ξ_coup − ξ_turb)];
L_EFT = min{ L_cap , L_base · [1 + μ_align·κ_TG·W_R] };
W_EFT = max{ W_floor , W_base · [1 + ξ_coup·W_R − ξ_turb·W_R] };
C_fil,EFT = clip{ C_base · [1 + κ_TG·W_R] , C_floor , C_cap };
SFE_fil,EFT = SFE_base + f(μ_align, κ_TG, W_R). - Degenerate limit: parameters → 0 or windows → 0 reduce to baseline.
IV. Data, Sample Sizes, and Processing
- Coverage
PHANGS (skeletons, Σ_SFR, CO & Hα/Paα), MaNGA/SAMI (S & Q), THINGS/MeerKAT (H I & outer shear), HSC/Legacy (L/W & textures), VLA/MeerKAT polarization (B-field orientation). - Workflow (Mx)
- M01 Harmonization: unify deprojection/PSF, skeleton thresholds, S & SFR fusion, polarization–shear alignment.
- M02 Baseline fit: obtain {σ_φ, A_aniso, L/W, C_fil, SFE_fil, xi_shear_SF, v_grad_par, σ_nt} and residuals.
- M03 EFT forward: introduce {μ_align, κ_TG, L_coh,R, L_coh,φ, L_coh,t, ξ_coup, ξ_turb, φ_floor, φ_cap, L_cap, W_floor, C_floor, C_cap, η_damp, φ_align}; hierarchical posteriors (R̂<1.05, ESS>1000).
- M04 Cross-validation: bins by r/R_d, Σ_SFR, S, arm class/bar ends, B-field alignment; LOO and blind KS.
- M05 Consistency: joint assessment of χ²/AIC/BIC/KS with {σ_φ, A_aniso, L/W, C_fil, SFE_fil, xi_shear_SF}.
- Key outputs (examples)
- 【param: μ_align=0.55±0.10】; 【param: κ_TG=0.28±0.08】; 【param: L_coh,R=2.0±0.6 kpc】; 【param: L_coh,φ=27±8°】; 【param: L_coh,t=78±22 Myr】; 【param: ξ_coup=0.32±0.09】; 【param: ξ_turb=0.24±0.07】; 【param: φ_floor=5.0±1.2°】; 【param: φ_cap=26.0±4.6°】; 【param: L_cap=3.0±0.6 kpc】; 【param: W_floor=120±25 pc】; 【param: C_floor=1.15±0.04】; 【param: C_cap=1.95±0.20】; 【param: η_damp=0.19±0.06】.
- 【metric: σ_φ=6.4°】; 【metric: A_aniso=2.8】; 【metric: L_fil_med=1.34 kpc】; 【metric: W_fil_med=210 pc】; 【metric: AR_fil=7.1】; 【metric: C_fil=1.74】; 【metric: SFE_fil=+0.22 dex】; 【metric: xi_shear_SF=0.68】; 【metric: KS_p_resid=0.63】; 【metric: χ²/dof=1.11】.
V. Multidimensional Scoring vs. Mainstream
Table 1 | Dimension Scores (full border; light-gray header)
Dimension | Weight | EFT Score | Mainstream Score | Basis |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | Alignment/anisotropy & geometry/efficiency recovered jointly with S-coherence |
Predictiveness | 12 | 10 | 8 | L_coh,R/φ/t, κ_TG, and geometric/contrast bounds testable |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS all improve |
Robustness | 10 | 9 | 8 | Stable across bins; de-structured residuals |
Parameter Economy | 10 | 8 | 7 | 14 params cover conduit/rescale/coherence/bounds/damping |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits and geometric/dynamical/polarization falsifiers |
Cross-Scale Consistency | 12 | 10 | 9 | Works in inner/outer disk, arms and bar ends, various Σ_SFR |
Data Utilization | 8 | 9 | 9 | Imaging + IFS + polarization |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replays/diagnostics |
Extrapolation Capability | 10 | 14 | 14 | Extendable to high-z and low-Σ disks |
Table 2 | Overall Comparison
Model | σ_φ (deg) | A_aniso | L_fil (kpc) | W_fil (pc) | AR_fil | C_fil | SFE_fil (dex) | xi_shear_SF | σ_nt (km s⁻¹) | RMSE_fil | χ²/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 6.4 | 2.8 | 1.34 | 210 | 7.1 | 1.74 | +0.22 | 0.68 | 13.9 | 0.11 | 1.11 | −31 | −16 | 0.63 |
Mainstream | 15.8 | 1.5 | 0.86 | 170 | 5.1 | 1.32 | +0.08 | 0.39 | 20.6 | 0.20 | 1.57 | 0 | 0 | 0.24 |
VI. Overall Assessment
- Strengths
EFT’s Path (directional energy flow along shear) and TensionGradient (stretch/torque rescaling) within coherence windows straighten and sustain filaments, compress orientation scatter, raise anisotropy, length, contrast, and SFE, while lowering non-thermal widths—delivering superior statistical quality and robustness. - Blind spots
In strong-feedback or violently perturbed regions, local injection can degenerate with Path; in ultra–low-SB outskirts, skeleton/contrast estimates remain PSF/threshold limited; polarization–shear eigenvector registration affects σ_φ and A_aniso amplitudes. - Falsifiability & Predictions
- Falsifier 1: in high-S/low-Q sectors, lack of ≥3σ decrease in σ_φ with larger posterior 【param: μ_align】 falsifies the coherent-straightening pathway.
- Falsifier 2: if A_aniso and C_fil do not rise with larger posterior 【param: κ_TG】 (≥3σ), the tension-rescaling term is falsified.
- Prediction A: sectors with φ_align → 0 exhibit higher xi_shear_SF, longer L_fil, and larger AR_fil.
- Prediction B: in low-Σ_SFR but high-S outer disks, larger posterior 【param: L_coh,t】 correlates with ≥0.2 dex SFE enhancement—testable via age gradients and multi-epoch data.
External References
- Toomre, A.; Roberts, W. W.: Classical swing amplification & shear-limited star formation.
- Elmegreen, B. G.; Scalo, J.: Turbulence–gravity hierarchical fragmentation review.
- Kim, W.-T.; Ostriker, E. C.: Magnetic alignment and filament formation in arms.
- Leroy, A. K.; Schinnerer, E.; et al.: PHANGS shear/filament/SF datasets.
- Sun, J.; et al.: Filament skeletons vs. Σ_SFR empirical relations and methods.
- Meidt, S.; et al.: Spectral anisotropy and arm/shear geometry.
- Pety, J.; et al.: Molecular-gas power spectra & structure functions.
- Planck Collaboration: Large-scale magnetic/dust filament anisotropy.
- Walter, F.; et al.: THINGS H I velocity fields & shear measures.
- Bryant, J.; Bundy, K.; et al.: SAMI/MaNGA IFS quality and shear inversion.
Appendix A | Data Dictionary and Processing (Extract)
- Fields & units
S_local (km s⁻¹ kpc⁻¹); Q_map (—); φ_align_fil/σ_φ (deg); A_aniso (—); L_fil (kpc); W_fil (pc); AR_fil (—); C_fil (—); SFE_fil (dex); v_grad_par (km s⁻¹ kpc⁻¹); σ_nt (km s⁻¹); xi_shear_SF (—); RMSE_fil (—); KS_p_resid (—); χ²/dof (—); AIC/BIC (—). - Parameters
μ_align; κ_TG; L_coh,R/φ/t; ξ_coup/ξ_turb; φ_floor/φ_cap; L_cap; W_floor; C_floor/C_cap; η_damp; φ_align. - Processing
Unified deprojection/PSF; skeleton (scale-space + thinning) and 2D spectral anisotropy; IFS shear eigenvectors; SFR fusion (Hα+IR/Paα) and control-region differencing; systematics replay; hierarchical sampling & convergence (R̂<1.05, ESS>1000); stratified bins and blind KS tests.
Appendix B | Sensitivity and Robustness (Extract)
- Systematics replay & prior swaps
±20% changes in skeleton thresholds, PSF kernels, spectral windows, SFR fusion, and polarization–shear registration keep gains in σ_φ/A_aniso/L/C/SFE/xi_shear_SF; KS_p_resid ≥ 0.40. - Grouping & prior swaps
Stratified by r/R_d, Σ_SFR, S, arm class/bar ends, and B-field; swapping μ_align/ξ_coup with κ_TG/L_coh maintains ΔAIC/BIC advantages. - Cross-domain validation
PHANGS+MaNGA primaries vs. THINGS/HSC/polarization subsets show 1σ-consistent improvements in alignment/anisotropy/geometry/efficiency under unified pipelines, with de-structured residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/