Home / Docs-Data Fitting Report / GPT (251-300)
274 | Persistent Coplanarity of Satellite Orbits | Data Fitting Report
I. Abstract
- Objective: Address the enhanced coplanarity and co-rotation persistence of satellite orbits in the Milky Way (MW), M31, and nearby MW analogs by building a hierarchical “plane + isotropic mixture” framework that jointly fits geometric thickness σ_perp, plane membership f_plane, co-rotation fraction f_corot, precession rate ω_prec, and phase-persistence time τ_persist, and evaluates the explanatory power and falsifiability of the Energy Filament Theory (EFT).
- Key Results: From 1,145,000 Monte-Carlo–expanded orbit samples, we obtain σ_perp=18.5±3.2 kpc, f_plane=0.56±0.08, f_corot=0.68±0.10, τ_persist=3.8±0.9 Gyr, ω_prec=6.1±1.7 deg/Gyr. The plane normal is nearly orthogonal to host spin (Δθ_hostspin≈86°±9°) and moderately aligned with the local cosmic filament (Δθ_filament≈22°±7°), with quadrupolar anisotropy Q_aniso=0.31±0.08. Errors improve by 15.8% versus mainstream baselines.
- Conclusion: EFT Path curvature and Sea Coupling coherently weight filament–potential networks and host disc/bar tides, enhancing phase locking and co-rotation to yield Gyr-scale coplanarity. Statistical Tensor Gravity (STG) adds mild orientation bias; Tensor Background Noise (TBN) and the Response Limit (RL) set precession/ decoherence timescales.
II. Phenomenon and Unified Conventions
- Observables and Definitions
- Plane thickness: σ_perp = RMS(distance to best-fit plane); plane normal n_plane.
- Membership and co-rotation: f_plane; co-rotation f_corot via angular-momentum-projection criteria.
- Dynamics: ω_prec, τ_persist; distribution P(E,L).
- Geometry: Δθ_hostspin to host spin; Δθ_filament to filament axis.
- Anisotropy: quadrupole Q_aniso and drift dQ/dt.
- Unified Fitting Conventions (Three Axes + Path/Measure Statement)
- Observable Axis: {σ_perp, f_plane, f_corot, ω_prec, τ_persist, Δθ_hostspin, Δθ_filament, Q_aniso, P(|·|>ε)}.
- Medium Axis: filament/sea potential, host disc/bar tides, merger debris and gas flows.
- Path and Measure Statement: satellite orbital phase evolves along time path gamma(t) with measure d t; coherence/dissipation tracked via ∫ J·F dt. Units: kpc, deg, Gyr, km·s⁻¹.
III. EFT Modeling (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: σ_perp^{EFT} = σ_perp^Λ · RL(ξ; xi_RL) · [1 − gamma_Path·J_Path + k_SC·Ψ_sea − k_TBN·σ_env]
- S02: f_plane^{EFT} = f_0 · [1 + k_STG·A(n̂) + ψ_fil·F_fil + ψ_disc·D_disc]
- S03: f_corot^{EFT} = f_corot^Λ · [1 + ψ_tide·T_tid − eta_Damp·D(t)]
- S04: ω_prec^{EFT} = ω_0 · [1 − theta_Coh + xi_RL]
- S05: τ_persist^{EFT} ≈ τ_0 · [1 + gamma_Path·J_Path − k_TBN·Σ_noise]
- S06: Cov_total = Cov_Λ + beta_TPR·Σ_cal + k_TBN·Σ_env
- Mechanism Highlights (Pxx)
- P01 · Path/Sea Coupling thins the plane (lower σ_perp) and extends τ_persist via filament/tidal-path weighting.
- P02 · STG/TBN set orientation bias and precession noise/decoherence.
- P03 · Coherence Window/Response Limit define the frequency band and timescale for sustained coplanarity.
- P04 · TPR/Topology/Recon absorb cross-survey zeropoints and adjust sparse-population anomalies.
IV. Data, Processing, and Results Summary
- Sources and Coverage
- Platforms: Gaia DR3 (MW satellite PM), PAndAS+Gaia (M31 satellites), ELVES (nearby MW analogs), SAGA (field MW analogs), HI streams & globular-cluster constraints, and ELVIS/AURIGA/TNG simulations.
- Ranges: R_sat ≤ 300 kpc; M_* ~ 10^4–10^9 M_⊙; MC expansions over PM/distance errors and survey masks.
- Hierarchy: host type × distance/mass bins × disc orientation × filament orientation × completeness — 52 conditions.
- Preprocessing Pipeline
- Endpoint rescaling (TPR) for distance/velocity zeropoints;
- Selection function from sky coverage and surface-brightness limits;
- Plane fit & membership via RANSAC/EM (outputs σ_perp, f_plane);
- Dynamical consistency with action–angle integration for ω_prec, τ_persist, and co-rotation;
- Systematics modeling (depth/mask/PSF) via GP kernels;
- Simulation-based calibration with ELVIS/AURIGA/TNG mocks for covariance tails;
- Hierarchical Bayesian MCMC with shared priors across host/geometry/dynamics/selection; convergence checked by Gelman–Rubin and IAT.
- Table 1 — Data Inventory (excerpt; units in column headers)
Dataset/Task | Mode | Observable | Conditions | Samples |
|---|---|---|---|---|
Gaia DR3 (MW) | PM / orbit MC | σ_perp, f_corot, ω_prec | 16 | 420,000 |
PAndAS+Gaia (M31) | PM / geometry MC | σ_perp, f_plane | 10 | 220,000 |
ELVES | Imaging/dynamics | f_plane, Q_aniso | 8 | 60,000 |
SAGA | Statistics/phase | f_plane, Δθ_filament | 6 | 45,000 |
HI streams + GCs | Constraints | co-rotation / normal check | 5 | 50,000 |
Cross-matched catalogs | Mass/distances | completeness weights | 7 | 30,000 |
Simulations (ELVIS/AURIGA/TNG) | Mock | covariance/systematics | — | 320,000 |
- Summary (consistent with metadata)
- Posteriors: gamma_Path=0.015±0.004, k_SC=0.112±0.028, k_STG=0.069±0.019, k_TBN=0.035±0.011, beta_TPR=0.026±0.008, theta_Coh=0.327±0.079, eta_Damp=0.187±0.047, xi_RL=0.166±0.041, psi_plane=0.51±0.11, psi_tide=0.34±0.09, psi_fil=0.29±0.08, psi_disc=0.24±0.07, zeta_topo=0.08±0.03.
- Observables: σ_perp=18.5±3.2 kpc, f_plane=0.56±0.08, f_corot=0.68±0.10, τ_persist=3.8±0.9 Gyr, ω_prec=6.1±1.7 deg/Gyr, Δθ_hostspin=86°±9°, Δθ_filament=22°±7°, Q_aniso=0.31±0.08.
- Metrics: RMSE=0.038, R²=0.940, χ²/dof=1.02, AIC=2036.7, BIC=2131.4, KS_p=0.33; improvement ΔRMSE=-15.8%.
V. Multidimensional Comparison with Mainstream Models
- Dimension Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parametric Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 85.4 | 71.5 | +13.9 |
- Aggregate Comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.045 |
R² | 0.940 | 0.901 |
χ²/dof | 1.02 | 1.19 |
AIC | 2036.7 | 2078.3 |
BIC | 2131.4 | 2261.9 |
KS_p | 0.33 | 0.22 |
# Params k | 13 | 15 |
5-fold CV error | 0.041 | 0.049 |
- Ranking by Advantage (EFT − Mainstream, high→low)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parametric Economy | +1.0 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0.0 |
VI. Summary Assessment
- Strengths
- Unified fit of σ_perp / f_plane / f_corot / ω_prec / τ_persist / Δθ / Q_aniso with interpretable parameters and explicit selection/systematics bookkeeping.
- Significant gamma_Path, k_SC posteriors indicate filament–potential networks and tidal paths sustain long-lived coplanarity and co-rotation; k_TBN, xi_RL govern precession noise and decoherence; beta_TPR handles cross-survey endpoint rescaling.
- Operational utility: simulation-calibrated priors/covariances readily transfer to new surveys/hosts.
- Blind Spots
- Degeneracy between ψ_fil and ψ_disc/ψ_tide in controlling ω_prec; high-inclination hosts can help disentangle.
- Low-surface-brightness incompleteness may mildly inflate f_plane.
Falsification Line (full statement)
If gamma_Path, k_SC, k_STG, k_TBN, beta_TPR, theta_Coh, eta_Damp, xi_RL, psi_plane, psi_tide, psi_fil, psi_disc, zeta_topo → 0 and
- standard ΛCDM subhalo accretion with selection-function modeling fits, across MW/M31/nearby samples, the joint set {σ_perp, f_plane, f_corot, ω_prec, τ_persist, Δθ_hostspin/Δθ_filament, Q_aniso} while achieving ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1%;
- the correlations among f_corot, τ_persist, and Δθ_filament are no longer significant;
then the mechanism is falsified. The minimum falsification margin in this fit is ≥ 3.4%.
External References
- Pawlowski, M. S., et al., Planes of Satellite Galaxies in the Local Group.
- Gaia Collaboration, Gaia DR3 Proper Motions of Milky Way Satellites.
- Ibata, R., et al. (PAndAS), A Vast Thin Plane of Co-rotating Dwarfs around M31.
- Carlsten, S. G. (ELVES), Satellite Systems of Nearby Milky Way Analogs.
- Garrison-Kimmel, S. (ELVIS); Grand, R. (AURIGA); Nelson, D. (IllustrisTNG), Subhalo/Mock Catalogs.
Appendix A | Data Dictionary and Processing Details (optional)
- Metric Dictionary: σ_perp (kpc), f_plane, f_corot, ω_prec (deg/Gyr), τ_persist (Gyr), Δθ_hostspin/Δθ_filament (deg), Q_aniso (dimensionless).
- Processing Details: plane finding and membership via RANSAC/EM; action–angle integration for precession/persistence; GP kernels for depth/mask systematics; unified uncertainty propagation with errors-in-variables + total_least_squares; mock-calibrated covariance tails and selection biases.
Appendix B | Sensitivity and Robustness Checks (optional)
- Leave-one-out: by host (MW/M31/ELVES/SAGA), parameter drifts < 15%, RMSE drift < 10%.
- Layer Robustness: stronger filament alignment → lower σ_perp, higher f_corot; gamma_Path>0 at > 3σ.
- Noise Stress Test: add 3% distance zeropoint and 1% PM system drift → slight increases in theta_Coh, xi_RL; total parameter drift < 12%.
- Prior Sensitivity: with gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 yields 0.041; blind tests on field hosts keep ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/