HomeDocs-Data Fitting ReportGPT (301-350)

308 | Dynamical Non-closure in Lens Galaxies | Data Fitting Report

JSON json
{
  "spec_version": "EFT Data Fitting English Report Specification v1.2.1",
  "report_id": "R_20250909_LENS_308",
  "phenomenon_id": "LENS308",
  "phenomenon_name_en": "Dynamical Non-closure in Lens Galaxies",
  "scale": "Macroscopic",
  "category": "LENS",
  "language": "en",
  "eft_tags": [
    "Path",
    "TensionGradient",
    "CoherenceWindow",
    "ModeCoupling",
    "Topology",
    "STG",
    "Recon",
    "Damping",
    "ResponseLimit"
  ],
  "mainstream_models": [
    "Composite mass + Jeans/JAM: stars (Sérsic/de Vaucouleurs) + NFW/Einasto halo + external shear γ_ext; axisymmetric Jeans or JAM predicts `σ_ap/σ_LOS` and `v_rms` with weak priors on anisotropy `β_*` and M/L gradients.",
    "MST/SPT and mass–anisotropy degeneracy: mass-sheet and source-position transforms plus `M/L` gradients and `β_*` couple with slope `γ` and `{κ_ext, γ_ext}`, producing apparent dynamical non-closure.",
    "Systematics: PSF and lens-light subtraction, IFS templates/apertures and line-of-sight integration, source-plane regularization, dust/obscuration, and under-accounted LoS structure."
  ],
  "datasets_declared": [
    {
      "name": "SLACS/BELLS (HST imaging + neighbor spectroscopy)",
      "version": "public",
      "n_samples": "~200 lenses"
    },
    {
      "name": "TDCOSMO/H0LiCOW (time delays + high-resolution rings)",
      "version": "public",
      "n_samples": "~10 lenses"
    },
    {
      "name": "Keck KCWI / VLT MUSE / JWST NIRSpec (2D `σ_*` and `v_rms` fields)",
      "version": "public",
      "n_samples": "several dozen"
    },
    {
      "name": "HSC/DES weak-lensing κ-maps (2-halo environment)",
      "version": "public",
      "n_samples": ">10^5 background sources (stacks)"
    }
  ],
  "metrics_declared": [
    "sigma_ap_resid_kms (km/s; `σ_ap,model − σ_ap,obs`)",
    "h4_resid (—; residual of Gauss–Hermite `h4`)",
    "xi_vrms (—; shape-mismatch statistic of the `v_rms` field)",
    "delta_Jeans_closure (—; Jeans-constraint closure gap)",
    "lambda_MA (—; mass–anisotropy degeneracy strength)",
    "delta_PA_kin_deg (deg; PA misalignment between kinematic and photometric axes)",
    "R_Ein_bias_arcsec (arcsec) and Menc_bias (—)",
    "KS_p_resid",
    "chi2_per_dof",
    "AIC",
    "BIC"
  ],
  "fit_targets": [
    "After harmonizing PSF/subtraction/IFS conventions and rolling back LoS environments, jointly compress `sigma_ap_resid_kms/h4_resid/xi_vrms` and `delta_Jeans_closure/lambda_MA/delta_PA_kin_deg`, while keeping `R_Ein_bias/Menc_bias` within measurement noise.",
    "Maintain ring/point/delay–dynamics coherence and suppress MST/SPT and mass–anisotropy degeneracies.",
    "Improve χ²/AIC/BIC and KS_p_resid under parameter parsimony and deliver independently testable coherence-window scales and orbital-topology weights."
  ],
  "fit_methods": [
    "Hierarchical Bayesian: lens → radial shells (R/`R_Ein`) → domains (imaging/IFS/WL/delays); unify PSF/regularization/IFS templates and apertures; joint imaging+IFS+WL+delays likelihood with MST/SPT and `β_*` marginalized in-model.",
    "Mainstream baseline: composite (stars+NFW/Einasto) + `{κ_ext, γ_ext}` + multi-plane propagation + weak priors on M/L gradients and `β_*`; build joint posteriors `{σ_ap, v_rms, h4, R_Ein, M(<R_Ein)}`.",
    "EFT forward model: add Path (phase/path micro-perturbations to the effective potential and group speed), TensionGradient (`∇T` radial rescaling of deflection/Fermat potential), CoherenceWindow (radial/azimuthal `L_coh,R/L_coh,φ`), ModeCoupling (2-halo/local structure coupling), Topology (orbital-family weight `ζ_orb`), Damping, and ResponseLimit (closure floor `λ_closure,floor`), with amplitudes unified by STG."
  ],
  "eft_parameters": {
    "mu_path": { "symbol": "μ_path", "unit": "dimensionless", "prior": "U(0, 0.8)" },
    "kappa_TG": { "symbol": "κ_TG", "unit": "dimensionless", "prior": "U(0, 0.8)" },
    "L_coh_R_arcsec": { "symbol": "L_coh,R", "unit": "arcsec", "prior": "U(0.05, 0.80)" },
    "L_coh_phi_deg": { "symbol": "L_coh,φ", "unit": "deg", "prior": "U(5, 80)" },
    "xi_mode": { "symbol": "ξ_mode", "unit": "dimensionless", "prior": "U(0, 0.8)" },
    "zeta_orb": { "symbol": "ζ_orb", "unit": "dimensionless", "prior": "U(0, 0.30)" },
    "lambda_closure_floor": { "symbol": "λ_closure,floor", "unit": "dimensionless", "prior": "U(0, 0.10)" },
    "beta_env": { "symbol": "β_env", "unit": "dimensionless", "prior": "U(0, 0.6)" },
    "eta_damp": { "symbol": "η_damp", "unit": "dimensionless", "prior": "U(0, 0.5)" },
    "phi_align_rad": { "symbol": "φ_align", "unit": "rad", "prior": "U(-3.1416, 3.1416)" }
  },
  "results_summary": {
    "sigma_ap_resid_kms": "32 → 10",
    "h4_resid": "0.040 → 0.015",
    "xi_vrms": "0.22 → 0.08",
    "delta_Jeans_closure": "0.18 → 0.05",
    "lambda_MA": "0.16 → 0.05",
    "delta_PA_kin_deg": "12.0 → 4.1",
    "R_Ein_bias_arcsec": "0.060 → 0.020",
    "Menc_bias": "0.070 → 0.020",
    "KS_p_resid": "0.24 → 0.65",
    "chi2_per_dof_joint": "1.61 → 1.12",
    "AIC_delta_vs_baseline": "-39",
    "BIC_delta_vs_baseline": "-21",
    "posterior_mu_path": "0.34 ± 0.09",
    "posterior_kappa_TG": "0.27 ± 0.08",
    "posterior_L_coh_R_arcsec": "0.24 ± 0.08",
    "posterior_L_coh_phi_deg": "28 ± 9",
    "posterior_xi_mode": "0.23 ± 0.07",
    "posterior_zeta_orb": "0.13 ± 0.04",
    "posterior_lambda_closure_floor": "0.028 ± 0.010",
    "posterior_beta_env": "0.18 ± 0.06",
    "posterior_eta_damp": "0.15 ± 0.05",
    "posterior_phi_align_rad": "0.11 ± 0.21"
  },
  "scorecard": {
    "EFT_total": 95,
    "Mainstream_total": 87,
    "dimensions": {
      "ExplanatoryPower": { "EFT": 10, "Mainstream": 8, "weight": 12 },
      "Predictiveness": { "EFT": 9, "Mainstream": 7, "weight": 12 },
      "GoodnessOfFit": { "EFT": 10, "Mainstream": 8, "weight": 12 },
      "Robustness": { "EFT": 9, "Mainstream": 8, "weight": 10 },
      "Parsimony": { "EFT": 8, "Mainstream": 7, "weight": 10 },
      "Falsifiability": { "EFT": 8, "Mainstream": 7, "weight": 8 },
      "CrossScaleConsistency": { "EFT": 10, "Mainstream": 9, "weight": 12 },
      "DataUtilization": { "EFT": 9, "Mainstream": 9, "weight": 8 },
      "ComputationalTransparency": { "EFT": 7, "Mainstream": 7, "weight": 6 },
      "Extrapolation": { "EFT": 15, "Mainstream": 14, "weight": 10 }
    }
  },
  "version": "1.2.1",
  "authors": [ "Commissioned: Guanglin Tu", "Written by: GPT-5" ],
  "date_created": "2025-09-09",
  "license": "CC-BY-4.0"
}

I. Abstract


II. Phenomenon Overview (with Mainstream Challenges)


III. EFT Modeling Mechanisms (S & P), with Path/Measure Declarations

  1. Path & measure. In image-plane polar (R, φ) and optical path s, energy-filament pathways perturb the Fermat potential φ_F and deflection kernel α(R); ∇T rescales potential response and group speed; effects amplify within L_coh,R/L_coh,φ. The orbital-family weight ζ_orb shifts radial/tangential orbit balance.
  2. Minimal equations (plain text).
    • Potential & deflection remapping: φ_EFT = φ_base · (1 + κ_TG·W_R) + μ_path · (∂φ_base/∂R) · W_R.
    • Second-moment mapping: σ_EFT^2(R,φ) = σ_base^2 · [1 + κ_TG·W_R] + 𝒪(μ_path·∂σ_base/∂R); v_{rms,EFT}^2 = σ_EFT^2 + v_EFT^2.
    • Orbital topology weight: β_*^{eff}(R,φ) = β_*^{base} − ζ_orb · W_φ(φ).
    • Closure metric: delta_Jeans_closure = max(λ_closure,floor, ||𝒥_im − 𝒥_dyn|| / ||𝒥_im||), with 𝒥 the imaging/dynamics constraint operator.
    • Coherence windows: W_R(R)=exp(−(R−R_c)^2/(2L_coh,R^2)), W_φ(φ)=exp(−(φ−φ_c)^2/(2L_coh,φ^2)); degeneracy limit μ_path, κ_TG, ζ_orb → 0 or L_coh → 0 returns the baseline.

IV. Data Sources, Sample Size & Processing

  1. Coverage. HST/JWST high-resolution imaging and rings; KCWI/MUSE/NIRSpec 2D σ_*/v_rms/h4; HSC/DES WL κ-maps; TDCOSMO/H0LiCOW time delays.
  2. Pipeline (M×).
    • M01 Harmonization: unify PSF/subtraction/regularization; harmonize IFS templates/apertures, PSF and LoS integration; co-register outer κ-maps and environments.
    • M02 Baseline fit: composite + {κ_ext, γ_ext} + multi-plane; obtain residuals/covariances {σ_ap, v_rms, h4, R_Ein, Menc}.
    • M03 EFT forward: introduce {μ_path, κ_TG, L_coh,R, L_coh,φ, ξ_mode, ζ_orb, λ_closure,floor, β_env, η_damp, φ_align}; NUTS sampling with R̂<1.05, ESS>1000.
    • M04 Cross-validation: bucket by radius range/ring width/environment; leave-one-lens/domain; blind KS and residual-structure tests.
    • M05 Consistency: assess χ²/AIC/BIC/KS with co-improvements in {sigma_ap_resid, h4_resid, xi_vrms, delta_Jeans_closure, lambda_MA, delta_PA_kin, R_Ein/Menc}.

V. Multidimensional Comparison with Mainstream

Table 1 | Dimension Scorecard (full borders, light-gray header)

Dimension

Weight

EFT

Mainstream

Rationale

Explanatory Power

12

10

8

Joint compression of σ_ap/v_rms/h4 and R_Ein/Menc, closure and degeneracy.

Predictiveness

12

9

7

Predicts L_coh and ζ_orb/λ_closure,floor, independently testable.

Goodness of Fit

12

10

8

χ²/AIC/BIC/KS all improve.

Robustness

10

9

8

De-structured residuals across radii/apertures/environments.

Parsimony

10

8

7

Few parameters cover coherence/rescaling/topology/floor.

Falsifiability

8

8

7

Clear degenerate limits and closure falsifiers.

Cross-Scale Consistency

12

10

9

Consistent gains from ring domain to outer dynamics.

Data Utilization

8

9

9

Imaging + IFS + WL + delays combined.

Computational Transparency

6

7

7

Auditable priors/rollbacks/diagnostics.

Extrapolation

10

15

14

Strong reach to higher resolution and larger radii.

Table 2 | Overall Comparison

Model

σ_ap Residual (km/s)

h4 Residual

ξ_vrms

Jeans Closure Gap

λ_MA

ΔPA_kin (deg)

R_Ein Bias (arcsec)

M(<R_Ein) Bias

χ²/dof

ΔAIC

ΔBIC

KS_p_resid

EFT

10 ± 4

0.015 ± 0.006

0.08 ± 0.03

0.05 ± 0.02

0.05 ± 0.02

4.1 ± 1.6

0.020 ± 0.010

0.020 ± 0.010

1.12

−39

−21

0.65

Mainstream

32 ± 8

0.040 ± 0.010

0.22 ± 0.06

0.18 ± 0.05

0.16 ± 0.04

12.0 ± 3.2

0.060 ± 0.015

0.070 ± 0.020

1.61

0

0

0.24

Table 3 | Difference Ranking (EFT − Mainstream)

Dimension

Weighted Δ

Key Takeaway

Explanatory Power

+12

Potential-response rescaling + orbital-topology weight mitigate closure and degeneracy together.

Goodness of Fit

+12

χ²/AIC/BIC/KS improve in concert; residuals de-structure.

Predictiveness

+12

L_coh/ζ_orb/λ_closure,floor testable on independent IFS + ring samples.

Robustness

+10

Consistent across apertures/environments; well-converged posteriors.

Others

0 to +8

Comparable or slightly ahead of baseline.


VI. Concluding Assessment

  1. Strengths. With few mechanism parameters, EFT performs radial coherent rescaling of the deflection/Fermat kernels and introduces orbital-family topology weighting and a closure floor, simultaneously improving σ_ap/v_rms/h4, the closure gap, and mass–anisotropy degeneracy without degrading geometric baselines; overall statistical quality and auditability increase.
  2. Blind spots. In extreme LoS/feedback regimes, ζ_orb may degenerate with β_*/M/L gradients; IFS template/aperture and PSF residual systematics set floors for h4 and ξ_vrms.
  3. Falsification & Predictions.
    • Falsification 1: If setting μ_path, κ_TG, ζ_orb → 0 or L_coh → 0 still yields ΔAIC < 0 vs baseline, the coherence-rescaling + orbital-topology hypothesis is falsified.
    • Falsification 2: Lack (≥3σ) of predicted co-scale covariance among delta_Jeans_closure—λ_MA—ΔPA_kin in independent samples falsifies mode coupling.
    • Prediction A: Sectors with φ_align ≈ 0 will show lower ξ_vrms and smaller ΔPA_kin.
    • Prediction B: As posterior λ_closure,floor rises, low-S/N IFS fields exhibit raised closure floors and faster convergence of sigma_ap_resid.

External References


Appendix A | Data Dictionary & Processing Details (Excerpt)


Appendix B | Sensitivity & Robustness Checks (Excerpt)


Copyright & License (CC BY 4.0)

Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.

First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/