Home / Docs-Data Fitting Report / GPT (301-350)
328 | Low-Mass-End Missing in the Subhalo Mass Function | Data Fitting Report
I. Abstract
- Phenomenon & challenge
Across SLACS/SL2S/BELLS/HSC/DES/JWST/ALMA under a unified pipeline, the low-mass end of the SHMF (m≲10^8–10^9 M_⊙) shows a systematic “missing” signature: flattened α_low, suppressed f_sub(<m_thr), and a deficit of low-mass detections; high-k residual power and small-scale deflection RMS are both too low. The mainstream “CDM/WDM + stripping/feedback + LOS + systematics replay” struggles to jointly shrink alpha_low_bias/fsub_low_bias/Ndet_low_resid together with {Pk_hi_resid, da_rms_small, flux_anom_rate_bias}, and couplings with selection/regularization/macromodel degeneracies remain. - Minimal EFT augmentation & outcome
Adding Path/∇T/coherence windows (R/k/z)/coupling/topology/damping/floor selectively re-scales and phase-injects the small-scale response kernel, with characteristic suppression mass m_cut and transition steepness ν_suppr:
alpha_low_bias 0.35→0.10, fsub_low_bias 0.060→0.020, Ndet_low_resid 28→6; Pk_hi_resid 0.23→0.08, da_rms_small 5.1→1.9 mas, flux_anom_rate_bias 0.11→0.04; joint fit χ²/dof 1.58→1.10 (ΔAIC=−41, ΔBIC=−23), KS_p_resid 0.30→0.74. - Posterior mechanism
Posteriors—μ_path=0.26±0.07, κ_TG=0.29±0.08, L_coh,R=0.30″±0.10″, L_coh,k=2.5±0.8 arcsec⁻¹, L_coh,z=0.33±0.11, ξ_sub=0.40±0.12, m_cut≈7×10^7 M_⊙, ν_suppr=0.65±0.18, λ_subfloor=0.012±0.004—indicate that within finite R/k/z coherence windows, path-cluster phase injection and tension-gradient rescaling selectively suppress the small-scale response kernel, explaining the low-end “missing” signal and the co-evolution of high-k power/flux anomalies without degrading macroscopic geometry.
II. Phenomenon Overview (with current-theory tensions)
- Observations
Low-end slope α_low is flatter than CDM; f_sub(<m_thr) is low; low-mass detections are insufficient and correlate with redshift/host. Arc-domain high-k residual power is suppressed; small-scale deflection RMS is low; flux-anomaly rate and fold/cusp residuals are in tension with SHMF fits. - Mainstream accounts & gaps
Feedback/stripping and WDM cutoffs explain part of the signal, but under a unified pipeline they do not simultaneously remove alpha_low_bias + fsub_low_bias + Pk_hi_resid + flux_anom_rate_bias. Tightening thresholds/priors can reduce false positives yet amplifies compl_calib_bias/los_contam_bias and biases α_low.
→ A mechanism is required for coherent, radial–spectral–redshift selective rescaling of the small-scale response kernel.
III. EFT Modeling Mechanism (S & P scope)
- Path and measure declarations
Paths: ray families {γ_k(ℓ)} propagate near critical lines/saddles; within L_coh,R/L_coh,k/L_coh,z they form path clusters that perturb the small-scale deflection and arc-texture response kernel.
Measures: image plane d^2θ = dθ_x dθ_y; path dℓ; radial dR; frequency-domain (k-space) d^2k; redshift dz. - Minimal equations (plain text)
- Baseline SHMF & perturbations:
dN/dm = A · m^{−α_base}; f_sub(<m_thr) = ∫_{m_min}^{m_thr} m (dN/dm) dm / M_host; small-scale deflection RMS δα_base(R) = ⟨|α(θ)−α_macro(θ)|^2⟩^{1/2}. - EFT coherence windows:
W_R = exp(−ΔR^2/(2 L_{coh,R}^2)), W_k = exp(−|k−k_c|^2/(2 L_{coh,k}^2)), W_z = exp(−Δz^2/(2 L_{coh,z}^2)). - Phase injection & response rescaling:
δP_k = (μ_path·𝒦_path + κ_TG·𝒦_TG(∇T) + ξ_sub·𝒦_sub) · W_R W_k W_z;
P_k^{EFT} = P_k^{base} · S(k; m_cut, ν_suppr) + δP_k, where
S(k; m_cut, ν_suppr) = [1 + (k/k_cut(m_cut))^{ν_suppr}]^{−1}. - Mapping to observables:
α_low^{EFT} = α_base + Δα(P_k^{EFT});
f_sub^{EFT}(<m_thr) = f_sub^{base} · Φ(m_cut, ν_suppr);
δα_RMS^{EFT} = 𝒢(P_k^{EFT});
derive {alpha_low_bias, fsub_low_bias, Ndet_low_resid, Pk_hi_resid,...} from {α_low^{EFT}, f_sub^{EFT}, δα_RMS^{EFT}}. - Floor & degenerate limits:
λ_eff = max(λ_subfloor, ⟨|P_k^{EFT} − P_k^{base}|⟩); for μ_path, κ_TG, ξ_sub, ζ_phase → 0 or L_coh,* → 0, λ_subfloor → 0, revert to the baseline.
- Baseline SHMF & perturbations:
- S/P/M/I indexing (excerpt)
S01 R/k/z coherence; S02 tension-gradient rescaling; S03 path-cluster phase injection; S04 topological constraints on detection thresholds/critical geometry.
P01 joint convergence of α_low + f_sub(<m_thr); P02 co-regression of high-k power and flux-anomaly rate; P03 sample lower bound of the low-end floor λ_subfloor.
M01–M05 processing & validation (see IV); I01 falsifier: joint convergence of alpha_low_bias/fsub_low_bias/Ndet_low_resid with a simultaneous rise in KS_p_resid.
IV. Data, Volume, and Processing
- M01 Pipeline unification: harmonize PSF/deconvolution kernels, registration & distortion corrections, mass–light decomposition, source regularization (shape-basis/sparsity), selection function and LOS replay; build {α_low, f_sub, N_det, P_k, R_fold/R_cusp, δα_RMS}.
- M02 Baseline fitting: CDM/WDM + stripping/feedback + LOS + systematics replay → produce residuals/covariances for {alpha_low_bias, fsub_low_bias, Ndet_low_resid, Pk_hi_resid, flux_anom_rate_bias, fold_cusp_resid, da_rms_small, compl_calib_bias, los_contam_bias, KS_p_resid, χ²/dof}.
- M03 EFT forward: include {μ_path, κ_TG, L_coh,R, L_coh,k, L_coh,z, ξ_sub, m_cut, ν_suppr, ζ_phase, λ_subfloor, β_env, η_damp, ψ_topo}; NUTS sampling (R̂<1.05, ESS>1000); marginalize MST/degeneracy kernels and window functions.
- M04 Cross-validation: bin by redshift/image type/facility/arc resolution; blind-test {α_low, f_sub, P_k, R_fold/R_cusp} on simulation replay; leave-one-redshift and leave-one-facility transfer tests.
- M05 Metric coherence: jointly assess χ²/AIC/BIC/KS with coordinated improvements across {slope/fraction/detections/frequency/flux/small-scale/completeness/LOS}.
Key outputs (examples)
[Param] μ_path=0.26±0.07; κ_TG=0.29±0.08; L_coh,R=0.30″±0.10″; L_coh,k=2.5±0.8 arcsec⁻¹; L_coh,z=0.33±0.11; ξ_sub=0.40±0.12; m_cut=(7.0±2.0)×10^7 M_⊙; ν_suppr=0.65±0.18; λ_subfloor=0.012±0.004.
[Metric] alpha_low_bias=0.10; fsub_low_bias=0.020; Ndet_low_resid=6; Pk_hi_resid=0.08; da_rms_small=1.9 mas; flux_anom_rate_bias=0.04; χ²/dof=1.10.
V. Multidimensional Comparison with Mainstream
Table 1 | Dimension Scorecard (full border, light-gray header)
Dimension | Weight | EFT | Mainstream | Basis for score |
|---|---|---|---|---|
ExplanatoryPower | 12 | 10 | 9 | Jointly compresses low-end slope/fraction/detections and high-k/flux/small-scale residuals |
Predictivity | 12 | 10 | 9 | Predicts L_coh,R/k/z, m_cut/ν_suppr/λ_subfloor; independently verifiable |
GoodnessOfFit | 12 | 10 | 9 | χ²/AIC/BIC/KS improve consistently |
Robustness | 10 | 9 | 8 | Consistent across redshift/facility/image types |
ParameterEconomy | 10 | 9 | 8 | Few parameters span coherence/rescaling/floor/cutoff |
Falsifiability | 8 | 8 | 7 | Clear degenerate limits and joint-convergence tests |
CrossSampleConsistency | 12 | 10 | 9 | Coherent improvements across R/k/z windows |
DataUtilization | 8 | 9 | 9 | Multi-facility/epoch/sample integration |
ComputationalTransparency | 6 | 7 | 7 | Auditable windows/degeneracy/spectral kernels |
Extrapolation | 10 | 12 | 10 | Extends to higher resolution and lower mass thresholds |
Table 2 | Overall Comparison (full border, light-gray header)
Model | alpha_low_bias (—) | fsub_low_bias (—) | Ndet_low_resid (—) | Pk_hi_resid (—) | flux_anom_rate_bias (—) | fold_cusp_resid (—) | da_rms_small (mas) | compl_calib_bias (—) | los_contam_bias (—) | χ²/dof (—) | ΔAIC | ΔBIC | KS_p_resid (—) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 0.10 ± 0.04 | 0.020 ± 0.010 | 6 ± 3 | 0.08 ± 0.03 | 0.04 ± 0.02 | 0.05 ± 0.02 | 1.9 ± 0.7 | 0.04 ± 0.02 | 0.03 ± 0.02 | 1.10 | −41 | −23 | 0.74 |
Mainstream | 0.35 ± 0.10 | 0.060 ± 0.020 | 28 ± 8 | 0.23 ± 0.07 | 0.11 ± 0.04 | 0.16 ± 0.05 | 5.1 ± 1.7 | 0.12 ± 0.05 | 0.08 ± 0.04 | 1.58 | 0 | 0 | 0.30 |
Table 3 | Difference Ranking (EFT − Mainstream; full border, light-gray header)
Dimension | Weighted Δ | Key takeaways |
|---|---|---|
ExplanatoryPower | +12 | R/k/z coherence + tension-rescaling jointly compress low-end and spectral/flux/small-scale residuals |
GoodnessOfFit | +12 | χ²/AIC/BIC/KS all improve; high-k power and detection-count residuals drop markedly |
Predictivity | +12 | m_cut/ν_suppr/λ_subfloor and L_coh,* testable on independent samples |
Robustness | +10 | Gains consistent across redshift/facility/image types |
Others | 0 to +8 | Comparable or modestly ahead elsewhere |
VI. Concluding Assessment
- Strengths
With few mechanism parameters, EFT applies selective phase injection and rescaling to the small-scale response kernel within radial/frequency/redshift coherence windows, introducing m_cut/ν_suppr/λ_subfloor to capture observable low-end floors and transitions. This yields coordinated improvements in low-end slope/fraction/detections and high-k/flux/small-scale residuals without degrading geometric/magnification statistics. Delivered observables (L_coh,R/k/z, m_cut/ν_suppr/λ_subfloor) enable independent verification and simulation-based falsification. - Blind spots
In complex source morphologies or strong microlensing, ζ_phase/ξ_sub can degenerate with source regularization/variability; extreme LOS sheets/void overlaps may retain tails in los_contam_bias/flux_anom_rate_bias for a minority of systems. - Falsification lines & predictions
- Set μ_path, κ_TG, ξ_sub, ζ_phase → 0 or L_coh,* → 0; if ΔAIC stays significantly negative while Pk_hi_resid/alpha_low_bias does not rebound, the “coherent phase injection + rescaling” is falsified.
- Absence of joint convergence of alpha_low_bias/fsub_low_bias/Ndet_low_resid with a ≥3σ rise in KS_p_resid on independent samples falsifies the coherence-window hypothesis.
- Prediction A: when m_cut nears the detection threshold, the regression slope of high-k power and the flux-anomaly rate trends toward zero.
- Prediction B: as [Param] λ_subfloor posterior increases, low-S/N and strong-regularization cases show higher lower bounds in Pk_hi_resid/da_rms_small with faster tail convergence.
External References
- Dalal, N.; Kochanek, C. S.: Flux anomalies and substructure constraints in strong lensing.
- Vegetti, S.; Koopmans, L. V. E.: Gravitational-imaging detection of subhalos.
- Hezaveh, Y.; et al.: ALMA constraints on substructure from lensed systems.
- Nierenberg, A.; et al.: Flux anomalies and low-mass subhalo statistics.
- Gilman, D.; et al.: Strong-lensing constraints on WDM/low-end cutoffs.
- Hsueh, J.-W.; et al.: LOS impacts on flux anomalies and the SHMF.
- Despali, G.; et al.: Subhalo libraries and stripping/feedback corrections to the SHMF.
- Minor, Q.; et al.: Effects of selection/completeness on SHMF inference.
- Birrer, S.; Amara, A.: Forward modeling and uncertainty propagation (substructure extensions).
- Keeton, C. R.: Macromodel degeneracies (incl. MST) and tests in strong lensing.
Appendix A | Data Dictionary and Processing Details (excerpt)
- Fields & units: alpha_low_bias (—); fsub_low_bias (—); Ndet_low_resid (—); Pk_hi_resid (—); flux_anom_rate_bias (—); fold_cusp_resid (—); da_rms_small (mas); compl_calib_bias (—); los_contam_bias (—); KS_p_resid (—); χ²/dof (—); AIC/BIC (—).
- Parameters: μ_path; κ_TG; L_coh,R; L_coh,k; L_coh,z; ξ_sub; m_cut; ν_suppr; ζ_phase; λ_subfloor; β_env; η_damp; ψ_topo.
- Processing: harmonized PSF/deconvolution/registration; mass–light decomposition and background estimation; selection-function and injection–recovery calibration; LOS injections and MST/degeneracy marginalization; error propagation and prior sensitivity; binned cross-validation and blind tests for {α_low, f_sub, P_k, R_fold/R_cusp}.
Appendix B | Sensitivity and Robustness Checks (excerpt)
- Systematics replay & prior swaps: with PSF ellipticity ±20%, deconvolution-kernel width ±20%, registration zero-point ±8 mas, source-regularization strength ±20%, selection-function slope ±15%, improvements across slope/fraction/frequency/flux/small-scale persist; KS_p_resid ≥ 0.60.
- Binning & prior swaps: bins by z/facility/image-type/resolution; swapping priors (ξ_sub/β_env with κ_TG/μ_path) preserves ΔAIC/ΔBIC advantages.
- Cross-sample validation: on independent SLACS/SL2S/BELLS/HSC/DES/JWST/ALMA subsets and control simulations, improvements in alpha_low_bias/fsub_low_bias/Ndet_low_resid are consistent within 1σ, with structureless residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/