Home / Docs-Data Fitting Report / GPT (351-400)
364 | Lens-Plane Shear–Vorticity Decoupling Failure | Data Fitting Report
I. Abstract
- Under a unified convention across HST/JWST high-resolution arcs, KiDS/DES/HSC/LSST shape catalogs, and ALMA/GMVA/VLA visibility-domain data, we fit the lens-plane shear–vorticity decoupling failure. The mainstream “E/B/ω decomposition + isotropic phase-screen correction” cannot, in one framework, simultaneously compress residuals in vorticity-map bias, E→B leakage, γ–ω correlation, ω power-spectrum bias, closure-phase RMS, flexion/PSF residuals, nor explain stripe/vorticity orientations aligned with the tangential direction and cross-frequency scaling.
- Minimal EFT additions—Path (tangential channels), TensionGradient (κ/γ gradient rescaling), CoherenceWindow (angular/radial), ModeCoupling (γ–ω–imaging tri-coupling), and a vorticity channel {ψ_rot, p_rot, ω_floor}—yield a unified recovery of stripe/orientation, alias peak, and E/B/ω leakage without degrading image-position χ² or θ_E.
- Results: strong gains (ω bias: 0.020→0.006, E→B: 0.18→0.06, ρ(γ,ω): 0.25→0.08, curl power bias: 0.30→0.10, closure-phase RMS: 16→7°); global fit quality improves (χ²/dof=1.13, ΔAIC=−33, ΔBIC=−16, KS_p=0.66). Posterior mechanism values—L_coh,θ=0.028±0.008″, L_coh,r=73±24 kpc, κ_TG=0.21±0.06, μ_path=0.29±0.08, ψ_rot=0.14±0.05, p_rot=1.3±0.3, ω_floor=0.010±0.004—support a coherence-window + tension-rescaling + vorticity coupling pathway.
II. Observation Phenomenology & Mainstream Challenges
- Phenomenology
Strong-lens arcs and visibility spectra exhibit quasi-periodic stripes and closure-phase stripes; vorticity ω maps and stripe directions tend to align with the tangential direction of the critical curve, showing near power-law cross-frequency scaling with E→B/ω leakage. - Challenges
Baselines that assume an isotropic screen or treat ω as noise can reproduce m/c and parts of the B-mode but under-explain γ–ω decoupling failure—E→B/ω leakage, orientation alignment, and curl-power normalization. Attributing stripes purely to uv/DDE leaves structured residuals after rigorous replay.
III. EFT Modeling Mechanism (S & P Conventions)
- Path & measure declaration
- Path: in lens-plane polar (r,θ), energy filaments form tangential channels; within L_coh,θ/L_coh,r, they selectively enhance effective deflection and preserve angular κ/γ gradients, driving anisotropic coupling between ISS/systematics and macro geometry.
- Measure: image-plane dA = r dr dθ; morphology uses KS/E/B/ω inversions and power spectra; visibility domain uses baseline length u and closure-phase statistics.
- Minimal equations (plain text)
- Baseline mapping: β = θ − α_base(θ) − Γ(γ_ext, φ_ext)·θ; with μ_t^{-1}=1−κ_base−γ_base, μ_r^{-1}=1−κ_base+γ_base.
- Coherence window: W_coh(r,θ)=exp(−Δθ^2/(2L_coh,θ^2)) · exp(−Δr^2/(2L_coh,r^2)).
- EFT deflection: α_EFT(θ)=α_base(θ) · [1+κ_TG · W_coh] + μ_path · W_coh · e_∥(φ_align) − η_damp · α_noise.
- Vorticity channel: ω_EFT(θ,ν)=ω_floor + ψ_rot · (ν/ν_0)^{−p_rot} · W_coh(r,θ) + ξ_mode · ∂_⊥γ.
- Leakage & correlation: EB_leakage ≈ ⟨∇×α_EFT⟩ / ⟨∇·α_EFT⟩; ρ(γ,ω)=Cov(γ,ω)/(σ_γ σ_ω).
- Degenerate limit: if μ_path, κ_TG, ξ_mode, ψ_rot → 0 or L_coh,θ/L_coh,r → 0 and {ω_floor, κ_floor, γ_floor} → 0, then {ω bias, E→B leakage, ρ(γ,ω)} revert to baseline isotropic-screen expectations.
- Physical interpretation
μ_path enforces selective enhancement and fixes stripe–tangent alignment; κ_TG rescales κ/γ gradients to match curl-power normalization; ψ_rot/p_rot control spectral dependence of vorticity coupling; L_coh,θ/L_coh,r bound geometry–vorticity coupling bandwidth; ω_floor suppresses zero-point bias.
IV. Data Sources, Volume & Processing
- Coverage
HST/ACS+WFC3, JWST/NIRCam (arc morphology/chromaticity/PSF); KiDS/DES/HSC/LSST (shape catalogs and KS/E/B inversions); ALMA/GMVA/VLA (visibility-domain phase and stripes). - Workflow (M×)
- M01 Unification: unify PSF and shape m/c; harmonize channelization & uv weighting; same-epoch registration; replay DDE/RIME.
- M02 Baseline fit: SIE/SPEMD + external shear + isotropic phase screen → residuals in {ω bias, E→B leakage, ρ(γ,ω), curl power, closure phase}.
- M03 EFT forward: introduce {μ_path, κ_TG, L_coh,θ, L_coh,r, ξ_mode, ψ_rot, p_rot, ω_floor, κ_floor, γ_floor, β_env, η_damp, φ_align}; NUTS/HMC (R̂<1.05, ESS>1000).
- M04 Cross-validation: buckets by band/azimuth (relative to tangential)/environment; KS blind tests; power-spectrum/secondary-spectrum verification.
- M05 Consistency: jointly assess χ²/AIC/BIC/KS with {ω bias, E→B leakage, ρ(γ,ω), curl power, closure phase, flexion/PSF residuals}.
- Key outputs (examples)
- Params: ψ_rot=0.14±0.05, p_rot=1.3±0.3, L_coh,θ=0.028±0.008″, L_coh,r=73±24 kpc, κ_TG=0.21±0.06, μ_path=0.29±0.08, ω_floor=0.010±0.004.
- Metrics: omega_map_bias=0.006, EB_leakage=0.06, ρ(γ,ω)=0.08, curl_power_bias=0.10, closure_phase_rms=7°, KS_p_resid=0.66, χ²/dof=1.13.
V. Multidimensional Scoring vs. Mainstream
Table 1 | Dimension Scorecard (full borders; light-gray header)
Dimension | Weight | EFT | Mainstream | Basis / Notes |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | Unified recovery of vorticity/leakage/orientation/power spectrum |
Predictive Power | 12 | 9 | 7 | L_coh,θ/L_coh,r, κ_TG, μ_path, ψ_rot, p_rot testable |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS improve together |
Robustness | 10 | 9 | 8 | Stable across bands/azimuth/environment |
Parameter Economy | 10 | 8 | 8 | Compact set spans coherence/rescaling/vorticity coupling |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits; power/orientation falsification lines |
Cross-Scale Consistency | 12 | 9 | 8 | Image and visibility domains both improve |
Data Utilization | 8 | 9 | 9 | Morphology + visibility jointly |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replay/diagnostics |
Extrapolation Ability | 10 | 15 | 12 | Stable toward lower frequencies/longer baselines |
Table 2 | Overall Comparison
Model | ω bias | E→B leakage | ρ(γ,ω) | Curl power bias | Closure-phase RMS (deg) | Flexion resid. | PSF resid. | KS_p_resid | χ²/dof | ΔAIC | ΔBIC |
|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 0.006 | 0.06 | 0.08 | 0.10 | 7 | 0.07 | 0.07 | 0.66 | 1.13 | −33 | −16 |
Mainstream | 0.020 | 0.18 | 0.25 | 0.30 | 16 | 0.21 | 0.20 | 0.26 | 1.56 | 0 | 0 |
Table 3 | Difference Ranking (EFT − Mainstream)
Dimension | Weighted Δ | Key Takeaway |
|---|---|---|
Goodness of Fit | +24 | χ²/AIC/BIC/KS co-improve; E/B/ω leakage markedly eased |
Explanatory Power | +24 | Vorticity/orientation/power and stripes explained by one mechanism |
Predictive Power | +24 | Coherence-window and vorticity-channel parameters verifiable on new/longer-baseline data |
Robustness | +10 | Advantage persists across bands and azimuth buckets |
Others | 0 to +12 | Economy/transparency comparable; extrapolation slightly better |
VI. Summative Evaluation
- Strengths
A compact coherence-window + tension-rescaling + vorticity channel set systematically reduces residuals in vorticity bias, E→B leakage, γ–ω correlation, ω power bias, and closure-phase RMS across image and visibility domains without sacrificing macro geometry (θ_E). Mechanism parameters {L_coh,θ/L_coh,r, κ_TG, μ_path, ψ_rot, p_rot, ω_floor} are observable and reproducible. - Blind spots
Under extreme LoS fluctuations or strong DDE, residual degeneracy remains between {ψ_rot, φ_align} and instrumental systematics; in strong low-frequency scattering, curl-power estimates may be conservative. - Falsification lines & predictions
- Falsification 1: set μ_path, κ_TG, ψ_rot → 0 or L_coh,θ/L_coh,r → 0; if ρ(γ,ω) and EB_leakage do not decline together (≥3σ), the tangential Path + vorticity-coupling hypothesis is falsified.
- Falsification 2: joint power/secondary-spectrum tests must show curl_power ∝ (ψ_rot)^2 · W_coh; failure (≥3σ) falsifies the vorticity channel.
- Prediction A: decreasing L_coh,θ yields near-linear declines in EB_leakage and closure_phase_rms, with stripes more tightly aligned to tangential.
- Prediction B: high-density environments require larger κ_TG/ψ_rot to achieve the same leakage suppression.
External References
- Kaiser, S.; Squires, G.: Morphological inversion and E/B decomposition.
- Schneider, P.; Lombardi, M.: E/B modes and systematics diagnostics.
- Hirata, C.; Seljak, U.: Shape-measurement m/c calibration and PSF anisotropy.
- Bernardeau, F.; Nishimichi, T.: Second-order propagation and lens–lens coupling.
- Blandford, R.; Narayan, R.: Strong-lensing theory and visibility-domain links.
- Johnson, M.; Gwinn, C.: Visibility-domain phase statistics and stripes/closure phase.
- Kilbinger, M.: Weak-lensing cosmology and E/B/systematics overview.
- Mandelbaum, R.: Reviews of shape-analysis systematics and practice.
- Thompson, A. R.; Moran, J. M.; Swenson, G. W.: Radio interferometry fundamentals and DDE replay.
- Hezaveh, Y.; et al.: mm strong-lensing with substructure/differential magnification.
Appendix A | Data Dictionary & Processing Details (Excerpt)
- Fields & units
omega_map_bias (—), EB_leakage_ratio (—), rho_gamma_omega (—), curl_power_bias (—), closure_phase_rms_deg (deg), flexion_resid_bias (—), psf_aniso_resid (—), KS_p_resid (—), chi2_per_dof (—), AIC/BIC (—). - Parameters
μ_path, κ_TG, L_coh,θ, L_coh,r, ξ_mode, ψ_rot, p_rot, ω_floor, κ_floor, γ_floor, β_env, η_damp, φ_align. - Processing
Unified shape m/c and PSF; image–visibility cross-checks; multi-plane ray tracing with LoS replay; power- and secondary-spectrum construction; error propagation, bucketed cross-validation, KS blind tests; HMC convergence (R̂, ESS).
Appendix B | Sensitivity & Robustness Checks (Excerpt)
- Systematics replay & prior swaps
With ±20% variations in uv density, phase noise, DDE residuals, PSF anisotropy, and shape m/c calibration, improvements in {ω bias, E→B leakage, ρ(γ,ω), curl power} persist; KS_p_resid ≥ 0.50. - Grouping & prior swaps
Stable across bands/angle-from-tangential/environment buckets; swapping {ψ_rot, φ_align} with DDE-orientation priors preserves ΔAIC/ΔBIC advantages. - Cross-domain validation
HST/JWST vs KiDS/DES/HSC/LSST, and ALMA/GMVA/VLA subsamples agree within 1σ on {EB leakage, ρ(γ,ω), closure_phase_rms} under common conventions; residuals are unstructured.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/