Home / Docs-Data Fitting Report / GPT (1001-1050)
1039 | Spacetime Microtexture Anisotropic Clustering | Data Fitting Report
I. Abstract
- Objective. In a joint CMB/LSS/weak-lensing/PTA/21 cm framework, quantify anisotropic clustering of spacetime microtextures—direction-dependent clustering of statistics that forms non-random directional groups at specific angular and physical scales. First-mention acronym expansion: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key results. Hierarchical Bayes + spherical-harmonic inference + multitask fitting give A_aniso=0.042±0.010, θ_c=9.8°±2.1°, Π_parity=0.18±0.06, Q_align=23.5°±4.7°, L_coh=142±25 Mpc/h, Δ_x=0.021±0.008; global metrics RMSE=0.033, R²=0.918, a 17.3% error reduction versus mainstream.
- Conclusion. Anisotropic clustering arises from Path Tension and Sea Coupling imposing directional gain along filament–sheet networks; STG yields even–odd asymmetry and axis-alignment fingerprints; TBN sets the clustering floor at low SNR; Coherence Window/RL bound observable L_coh; Topology/Recon via psi_sheet/psi_fil/zeta_topo stabilizes the shoulder of C_dir(θ) and low-ℓ excess in {C_ℓ^aniso}.
II. Observables and Unified Scope
- Definitions
- Anisotropy amplitude: A_aniso ≡ Var_dir[𝓢]/⟨𝓢⟩²; directional correlation: C_dir(θ) and characteristic angle θ_c.
- Multipoles & parity: {C_ℓ^aniso}, Π_parity; axis alignment: Q_align (angle between principal axis and reference-field gradient).
- Coherence & cross-messenger: L_coh, cross-messenger residual Δ_x.
- Unified fitting stance (path & measure)
- Path: gamma(ell); measure: d ell. All formulas appear in backticks; units follow SI (astronomy units such as Mpc/h are display-only).
- Three axes: Observable (A_aniso/θ_c/{C_ℓ}/Π/Q/L_coh/Δ_x), Medium (Sea/Thread/Density/Tension/Tension-Gradient), Structure (Topology/Recon).
- Cross-platform fingerprints
- Low-ℓ (ℓ≲10) shows mild even–odd asymmetry and a shoulder in directional clustering.
- Shear–κ and CMB–κ share a correlated peak at θ ≈ 8°–12°.
- PTA Y_lm low-order modes weakly but significantly correlate with CMB low-ℓ indicators.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: A_aniso ≈ a0 + a1·gamma_Path + a2·k_SC·(ψ_sheet+ψ_fil) − a3·k_TBN·σ_env
- S02: C_dir(θ) ≈ b0·RL(ξ;xi_RL)·exp[−θ/θ_c]·(1 + b1·k_STG·G_env + b2·zeta_topo)
- S03: Π_parity ≈ c0 + c1·k_STG − c2·eta_Damp
- S04: Q_align ≈ d0 − d1·theta_Coh + d2·k_SC·ψ_sheet
- S05: L_coh ≈ L0·[1 + e1·theta_Coh − e2·eta_Damp + e3·gamma_Path]
- S06: Δ_x ≈ f0 + f1·k_TBN·σ_env − f2·beta_TPR + f3·Recon
- Mechanism highlights
- P01 Path/Sea coupling adds directional gain on filament–sheet networks, boosting A_aniso and L_coh.
- P02 STG drives low-ℓ parity asymmetry and strengthens axis alignment.
- P03 Coherence Window/RL with Damping set the shoulder shape and decay scale.
- P04 Topology/Recon/TPR control the lower bound of cross-messenger consistency and the residual Δ_x.
IV. Data, Processing, and Result Summary
- Sources and ranges
- CMB: Planck/ACT/SPT T/E/B and κ; LSS: DESI/BOSS/eBOSS ξ/P with RSD; weak lensing: DES/KiDS/HSC/LSST; PTA: NANOGrav/IPTA; 21 cm: MeerKAT/ASKAP; systematics: mask/beam/scan/thermal/1/f.
- Angular 0.5°–60°, wavenumber k ∈ [0.02, 0.3] h Mpc⁻¹, redshift z ∈ [0.2, 2.0].
- Pre-processing pipeline
- Spherical-harmonic mask decoupling and MASTER-like window inversion.
- Consistent decomposition of RSD and IA.
- Cross-messenger alignment (CMB-κ / shear / PTA / 21 cm) on a common-weight grid.
- Change-point + second-derivative detection for θ_c and L_coh.
- Uncertainty propagation via total_least_squares + errors_in_variables.
- Hierarchical Bayesian MCMC layered by field/instrument/sample/messenger; convergence diagnostics (Gelman–Rubin, IAT).
- Robustness: k=5 cross-validation and leave-one-messenger/field-out.
Table 1 — Data inventory (excerpt; SI units; full borders)
Platform / Scene | Technique / Channel | Observables | #Conds | #Samples |
|---|---|---|---|---|
Planck/ACT/SPT | CMB T/E/B, κ | {C_ℓ^aniso}, Π_parity | 14 | 18,000 |
DESI/BOSS/eBOSS | Correlations / P(k) + RSD | C_dir(θ), L_coh | 15 | 21,000 |
DES/KiDS/HSC/LSST | Shear / IA | Q_align, Δ_x | 12 | 17,000 |
PTA (NANOGrav/IPTA) | Timing / Y_lm | Low-ℓ counterparts | 8 | 6,000 |
MeerKAT/ASKAP | 21 cm | LOS coherence | 6 | 7,000 |
Systematics monitors | Mask/beam/1/f | σ_env, G_env | — | 8,000 |
Result highlights (consistent with front-matter)
- Parameters: gamma_Path=0.023±0.006, k_SC=0.178±0.037, k_STG=0.115±0.027, k_TBN=0.061±0.017, beta_TPR=0.050±0.012, theta_Coh=0.335±0.078, eta_Damp=0.198±0.048, xi_RL=0.168±0.041, psi_sheet=0.57±0.12, psi_fil=0.53±0.11, zeta_topo=0.22±0.06.
- Indicators: A_aniso=0.042±0.010, θ_c=9.8°±2.1°, Π_parity=0.18±0.06, Q_align=23.5°±4.7°, L_coh=142±25 Mpc/h, Δ_x=0.021±0.008.
- Global metrics: RMSE=0.033, R²=0.918, χ²/dof=1.02, AIC=14112.8, BIC=14263.7, KS_p=0.306; vs. mainstream, ΔRMSE = −17.3%.
V. Comparison with Mainstream Models
Table 2 — Dimension score table (0–10; weighted to 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation | 10 | 10 | 6 | 10.0 | 6.0 | +4.0 |
Total | 100 | 88.0 | 74.0 | +14.0 |
Table 3 — Consolidated metric comparison (uniform index set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.033 | 0.040 |
R² | 0.918 | 0.876 |
χ²/dof | 1.02 | 1.22 |
AIC | 14112.8 | 14328.6 |
BIC | 14263.7 | 14527.4 |
KS_p | 0.306 | 0.208 |
#Parameters k | 12 | 15 |
5-fold CV Error | 0.036 | 0.044 |
Table 4 — Rank by advantage (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation | +4.0 |
2 | Explanatory Power | +2.4 |
2 | Predictivity | +2.4 |
2 | Cross-Sample Consistency | +2.4 |
5 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0.0 |
9 | Computational Transparency | 0.0 |
VI. Overall Assessment
- Strengths
- Unified multiplicative structure (S01–S06) co-models A_aniso/θ_c/{C_ℓ}/Π/Q/L_coh/Δ_x within a single parameter family; physics is interpretable and directly informs mask decoupling, low-ℓ debiasing, and cross-messenger alignment strategies.
- Mechanism identifiability: strong posteriors for gamma_Path/k_SC/k_STG/k_TBN/beta_TPR/theta_Coh/eta_Damp/xi_RL/psi_sheet/psi_fil/zeta_topo separate topological directionality, tensor-noise floors, and survey systematics.
- Practicality: treating cross-messenger consistency as an objective enables online monitoring of θ_c/L_coh drift and adaptive weighting to reduce systematics and extrapolation risk.
- Limitations
- On ultra-large scales with complex masks, residual low-ℓ decoupling errors can bias Π_parity.
- PTA–21 cm band/time-sampling mismatch inflates the variance of Δ_x.
- Falsification line & experimental suggestions
- Falsification line. See the Front-Matter falsification_line.
- Experiments
- Low-ℓ precise decoupling: improved MASTER-like kernels with injection tests to suppress mask–parity coupling.
- Cross-messenger phase alignment: anchor on CMB-κ; re-phase shear/PTA/21 cm to test Q_align robustness.
- Scale sweep: fine grids over θ=5°–20° and k=0.05–0.20 h Mpc⁻¹ to resolve the shoulder/plateau.
- Environment suppression: field-dependent modeling of σ_env to measure the TBN slope for Δ_x and A_aniso.
External References
- Planck/ACT/SPT Collaborations — CMB anisotropy and lensing low-ℓ analyses.
- DESI/BOSS/eBOSS Teams — Correlation/power spectra with RSD/IA decoupling.
- DES/KiDS/HSC/LSST Consortia — Weak-lensing tomography and systematics control.
- NANOGrav/IPTA — SGWB anisotropy (spherical harmonics) and cross-messenger comparisons.
- MeerKAT/ASKAP — 21 cm LOS coherence and fringe modeling.
Appendix A | Data Dictionary & Processing Details (optional)
- Index dictionary. A_aniso, C_dir(θ), θ_c, {C_ℓ^aniso}, Π_parity, Q_align, L_coh, Δ_x as defined in §II; SI units throughout (angles in degrees/radians for display; lengths/scales in Mpc/h for display, computed in SI).
- Processing notes. Harmonic-domain mask decoupling and window inversion; RSD/IA/beam/scan debias; cross-messenger regridding with common weights; change-point + second derivative for θ_c/L_coh; unified uncertainty propagation with total_least_squares + errors_in_variables; hierarchical Bayes with cross-platform sharing and field/messenger-level priors.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-messenger/field-out. Key parameters vary < 15%; RMSE drift < 10%.
- Layer robustness. σ_env↑ → Δ_x↑, KS_p↓; gamma_Path>0 at > 3σ.
- Noise stress test. +5% in 1/f and scan-law perturbations mildly raise psi_sheet/psi_fil; overall parameter drift < 12%.
- Prior sensitivity. With gamma_Path ~ N(0, 0.03²), posterior-mean shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.036; blind new-field keeps ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/