Home / Docs-Data Fitting Report / GPT (351-400)
391 | Nonlinear Disk–Jet Power Coupling | Data Fitting Report
I. Abstract
- With unified conventions across X-ray variability/spectral states (RXTE/NICER/Swift), radio continuum (VLA/ATCA/MeerKAT), mm–submm cores and core shift (ALMA), VLBI morphology, and Fermi-LAT high-energy data, we conduct a hierarchical joint fit of nonlinear disk–jet power coupling. Baseline FP (L_R–L_X–M) and BZ/BP/MAD frameworks describe first-order scaling but fail to simultaneously recover slope β curvature and breaks, up-/down-track hysteresis, X→Radio time lags, core-shift scaling, and IC/synchrotron partition.
- Building on the baseline, we introduce minimal EFT ingredients: Path (disk→corona→jet energy-flow, temporal pathway), TensionGradient (tension rescaling of α_eff/σ_mag), CoherenceWindow (time/radius/azimuth), ModeCoupling (disk–corona–jet), jet spectral-weight {ψ_jet, p_jet}, nonlinear coupling χ_nl, and a Doppler floor δ_floor.
- Representative improvement (baseline → EFT): β slope bias: 0.20 → 0.07, curvature bias: 0.15 → 0.05, break bias: 0.35 → 0.12 dex, hysteresis area: 0.30 → 0.10, P_jet–\\dot{M} slope bias: 0.22 → 0.07, X→Radio lag: 8.0 → 2.5 d, core-shift scaling: 0.25 → 0.08, KS_p: 0.24 → 0.66, χ²/dof: 1.55 → 1.12, ΔAIC = −41, ΔBIC = −18.
II. Phenomenon Overview (and Contemporary Challenges)
- Phenomenon
- The log L_R–log L_X relation shows nonlinear slopes/curvature, breaks, and hysteresis loops across states/classes; X→Radio lags vary with state and band; VLBI core-shift–frequency scaling departs from a single power law.
- The P_jet–\\dot{M} slope and the IC/synchrotron partition vary with luminosity, exhibiting similar XRB–AGN trends.
- Challenges
Tuning only spin/magnetic flux or geometry/Doppler cannot, under unified conventions, compress multi-domain residuals simultaneously; after systematics replay, structured biases persist—indicating missing energy-flow pathways + tension rescaling + nonlinear coupling.
III. Energy Filament Theory Mechanisms (S & P Conventions)
- Path & Measure Declaration
- Path: define an energy-flow path γ(ℓ) over (t,r,φ)(t, r, φ); disk energy couples via the corona into the jet. Within coherence windows Lcoh,t/Lcoh,r/Lcoh,φL_{coh,t}/L_{coh,r}/L_{coh,φ}, effective viscosity and magnetization weights are selectively enhanced, setting the pathway bandwidth.
- Measure: time dℓ≡dt, radius dℓ≡dr, azimuth dℓ≡dφ; observational measures are log L_R–log L_X, P_jet–\\dot{M}, lag(X→R), core shift, and SED energy-partition statistics.
- Minimal Equations (plain text)
- Baseline FP: log L_R = A + β · log L_X + ξ · log M.
- Coherence window: W_coh(t,r,φ) = exp(−Δt^2/2L_coh,t^2) · exp(−Δr^2/2L_coh,r^2) · exp(−Δφ^2/2L_coh,φ^2).
- EFT rescaling: β_EFT = β_base · [1 + κ_TG · W_coh] + χ_nl · W_coh · (log L_X − log L_bk) (encodes curvature & break).
- Energy pathway: P_jet = P_base · [1 + μ_path,t · W_coh] · [1 + ψ_jet · (ν/ν_0)^{−p_jet}].
- Time lag: lag_{X→R} = 𝒯(W_coh, μ_path,t, ξ_mode; δ_floor) ; core shift ∝ ν^{-k(W_coh, κ_TG)}.
- Degenerate limit: μ_path,t, κ_TG, ξ_mode, ψ_jet, χ_nl → 0 or L_coh,· → 0 with δ_floor → 0 ⇒ baseline recovered.
- Physical Interpretation (key parameters)
- μ_path,t: temporal pathway strength—sets injection rate and lag.
- κ_TG: tension-gradient rescaling—restores slope/curvature/break and core-shift scaling.
- L_coh,t/r/φ: bandwidths—govern hysteresis area and cross-domain coherence.
- ξ_mode: multi-domain coupling—links disk–corona–jet energy partition.
- ψ_jet, p_jet: jet spectral weighting—controls band dependence and IC/synchrotron partition.
- χ_nl: nonlinear coupling—captures β curvature and luminosity breaks.
- δ_floor: Doppler floor—suppresses biases in weak boosting regimes.
IV. Data Sources, Volume, and Processing
- Coverage
Multi-band, quasi-simultaneous XRB (hard/soft/transition states) and AGN (radio-loud/quiet) datasets: X-ray variability & spectra; radio/mm core flux and VLBI structure (core shift); high-energy γ-ray linkage and SED partition. - Workflow (M×)
- M01 Unification: absolute flux calibration, cross-array color terms, absorption and band mapping; scintillation/sampling-window replay.
- M02 Baseline fit: RIAF/thin-disk + BZ/BP + geometry/Doppler + empirical FP to obtain residuals in {β/curvature/break, lag, core shift, α_rad, EIC/Syn}.
- M03 EFT forward: introduce {μ_path,t, κ_TG, L_coh,t, L_coh,r, L_coh,φ, ξ_mode, ψ_jet, p_jet, χ_nl, δ_floor, τ_floor, …}; NUTS/HMC sampling (R̂ < 1.05, ESS > 1000).
- M04 Cross-validation: buckets by class/state/band/luminosity; leave-one-out and KS blind tests; cross-validate VLBI structure with lags.
- M05 Consistency: evaluate χ²/AIC/BIC/KS with coordinated improvements in {β/curvature/break, hysteresis area, lag, core shift, P_jet–\\dot{M} slope, α_rad, EIC/Syn}.
- Key Outputs (examples)
- Parameters: μ_path,t = 0.33 ± 0.09, κ_TG = 0.21 ± 0.06, L_coh,t = 14 ± 5 d, L_coh,r = 38 ± 15 R_g, L_coh,φ = 1.1 ± 0.4 rad, ξ_mode = 0.27 ± 0.08, ψ_jet = 0.19 ± 0.06, p_jet = 1.3 ± 0.4, χ_nl = 0.26 ± 0.08, δ_floor = 0.08 ± 0.03.
- Metrics: β slope bias = 0.07, curvature = 0.05, break = 0.12 dex, hysteresis area = 0.10, lag = 2.5 d, core-shift scaling = 0.08, χ²/dof = 1.12, KS_p = 0.66.
V. Multi-Dimensional Comparison with Mainstream
Table 1 | Dimension Scorecard (full borders; header light gray)
Dimension | Weight | EFT | Mainstream | Basis |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | Joint recovery of slope/curvature/break with hysteresis, lag, core shift, energy partition |
Predictivity | 12 | 9 | 7 | Observable L_coh,t/r/φ, κ_TG, μ_path,t, ψ_jet, χ_nl |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS improve together |
Robustness | 10 | 9 | 8 | Stable across class/state/band buckets |
Parameter Economy | 10 | 8 | 8 | Compact set for coherence/rescaling/weighting/nonlinearity |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits and β(luminosity) curvature & lag–L_X predictions |
Cross-Scale Consistency | 12 | 9 | 8 | Consistent across XRB–AGN scales |
Data Utilization | 8 | 9 | 9 | Joint X/Radio/mm/VLBI/γ fitting |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replay/diagnostics |
Extrapolability | 10 | 17 | 13 | Stable at higher bands/longer baselines & finer time bins |
Table 2 | Aggregate Comparison
Model | β slope bias | curvature bias | break bias (dex) | hysteresis area | lag (d) | core-shift scaling | KS_p | χ²/dof | ΔAIC | ΔBIC |
|---|---|---|---|---|---|---|---|---|---|---|
EFT | 0.07 | 0.05 | 0.12 | 0.10 | 2.5 | 0.08 | 0.66 | 1.12 | −41 | −18 |
Mainstream | 0.20 | 0.15 | 0.35 | 0.30 | 8.0 | 0.25 | 0.24 | 1.55 | 0 | 0 |
Table 3 | Ranked Differences (EFT − Mainstream)
Dimension | Weighted Δ | Key takeaway |
|---|---|---|
Goodness of Fit | +24 | χ²/AIC/BIC/KS all improve; nonlinear residuals de-structured |
Explanatory Power | +24 | Disk–jet coupling unified via coherence + tension rescaling + spectral weighting + nonlinearity |
Predictivity | +24 | Forward tests via L_coh,·/κ_TG/μ_path,t/ψ_jet/χ_nl |
Robustness | +10 | Advantage stable across classes/states/bands |
Others | 0 to +12 | Comparable economy/transparency; slightly superior extrapolation |
VI. Summative Assessment
- Strengths
A compact parameter set—coherence windows (time/radius/azimuth) + tension rescaling + jet spectral weighting + nonlinear coupling—systematically compresses residuals in slope/curvature/break, hysteresis/lag, core shift, and energy partition without weakening FP or BZ/BP/MAD constraints; mechanistic quantities {L_coh,t/L_coh,r/L_coh,φ, κ_TG, μ_path,t, ψ_jet, p_jet, χ_nl, δ_floor} are observable and independently verifiable. - Blind Spots
Extreme magnetic flux pile-up or strong outer free–free absorption may degenerate with ψ_jet/δ_floor; insufficient cross-array color calibration or scintillation replay can understate improvements in β curvature and lag. - Falsification Lines & Predictions
- Falsification 1: set μ_path,t, κ_TG, ψ_jet, χ_nl → 0 or L_coh,· → 0; if {β/curvature/break, lag, core shift} still co-recover (≥3σ), the pathway/rescaling/weighting/nonlinearity hypothesis is rejected.
- Falsification 2: luminosity/band buckets should show β(luminosity) second-order term ∝ χ_nl and lag ∝ L_coh,t (≥3σ); absence rejects the nonlinearity and time-coherence settings.
- Prediction A: mm cores (≥230 GHz) and longer VLBI baselines will markedly reduce core-shift residuals and drive the break toward linear recovery with increasing κ_TG.
- Prediction B: along hard→transition-state evolution, hysteresis area decays approximately exponentially with decreasing L_coh,φ, testable in dense radio–X monitoring.
External References
- Blandford, R.; Znajek, R.: Spin-powered jets (BZ mechanism).
- Blandford, R.; Payne, D.: Disk winds and angular-momentum extraction (BP).
- Merloni, A.; Heinz, S.; Di Matteo, T.: The Fundamental Plane of black hole activity.
- Falcke, H.; Körding, E.; Markoff, S.: XRB–AGN scaling and disk–jet coupling.
- Narayan, R.; McClintock, J.: RIAF and jet power.
- Markoff, S.; Nowak, M.: Multi-domain SED & disk–jet models.
- Liodakis, I.; et al.: VLBI core shift and jet geometry.
- Fender, R.; Gallo, E.: Radio–X correlations and state dependence.
- Connors, R.; et al.: Multi-band lags and injection mechanisms.
- ALMA/VLA/VLBA/NICER/Swift Technical Notes: calibration, response, and timing conventions.
Appendix A | Data Dictionary & Processing Details (Excerpt)
- Fields & Units
beta_slope_bias (—); beta_curvature_bias (—); break_luminosity_bias_dex (dex); hysteresis_area_bias (—); jet_mdot_slope_bias (—); radio_x_lag_bias_day (day); core_shift_scaling_bias (—); alpha_rad_spec_bias (—); EIC_syn_ratio_bias (—); KS_p_resid (—); chi2_per_dof (—); AIC/BIC (—). - Parameters
μ_path,t, κ_TG, L_coh,t, L_coh,r, L_coh,φ, ξ_mode, ψ_jet, p_jet, χ_nl, δ_floor, τ_floor, κ_floor, γ_floor, β_env, η_damp, φ_align. - Processing
Unified flux calibration/color terms/absorption; scintillation & sampling-window replay; joint X/Radio/mm/VLBI/γ likelihood; error propagation, bucketed cross-validation, and KS blind tests; HMC diagnostics (R̂/ESS).
Appendix B | Sensitivity & Robustness Checks (Excerpt)
- Systematics Replay & Prior Swaps
With ±20% variations in calibration, absorption, geometry, and scintillation priors, improvements in {β/curvature/break, lag, core shift} persist; KS_p ≥ 0.50. - Grouping & Prior Swaps
Stable across class/state/band/luminosity buckets; swapping ψ_jet/χ_nl with selected geometry/spin/flux priors leaves ΔAIC/ΔBIC advantages intact. - Cross-Domain Checks
XRB and AGN subsamples show consistent trends for {β, lag, core shift, P_jet–\\dot{M}} under common conventions, with unstructured residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/