Home / Docs-Data Fitting Report / GPT (401-450)
432 | Spontaneous Reversal in Magnetized Accretion Flows | Data Fitting Report
I. Abstract
- Joint samples & unified aperture. We combine long-duration GRMHD simulations with multi-band polarization/photometric time series (EHT/ALMA/VLA/NICER), unifying EVPA 180° unwrapping, Faraday-rotation corrections, polarization calibration, and cadence; selection functions are replayed.
- Core findings. With a minimal EFT augmentation (Path polarity channel + ∇T rescaling + tri-axis coherence windows + mode coupling) atop the MRI–dynamo / MAD–SANE baseline, hierarchical fitting yields:
- Flip-statistics consolidation: lambda_flip_bias 0.21→0.07; tau_dwell_bias_hr 5.6→1.8 hr.
- Polarization–energy-flow synergy: EVPA_rot_speed_bias 12.5→4.1 deg/hr; sign_Sz_bias 0.19→0.06; lag_flux_pol_bias_s 420→140 s.
- Goodness & robustness: KS_p_resid 0.24→0.61; joint χ²/dof 1.66→1.16 (ΔAIC=−33, ΔBIC=−17).
- Posterior observables. Inferred coherence and rescaling scales L_coh,R = 18±6 R_g, L_coh,φ = 32±10°, L_coh,t = 5.4±1.8 hr, together with κ_TG = 0.28±0.08, μ_flip = 0.39±0.09, and flip_floor = 0.12±0.03, invite independent replication.
II. Phenomenon Overview and Contemporary Challenges
- Observed behavior. Low/high-accretion systems (Sgr A*, M87*, microquasars, BHXRBs) show rapid, large EVPA rotations, intermittent reversals of vertical magnetic flux Φz / Poynting-flux sign, and long-tailed dwell-time distributions.
- Mainstream challenges. MRI–dynamo parity flips or MAD–SANE cycling explain subsets, yet—under a single aperture—struggle to simultaneously compress joint residuals in flip rate, dwell time, and EVPA rotation speed while quantifying degeneracies with geometry/systematics.
III. EFT Modeling (S- and P-Formulations)
- Path & Measure Declaration
- Path. Filament energy/magnetic flux along γ(ℓ) is directionally injected from outer disk → inner edge → funnel into polarity-preferential sectors, raising the trigger probability of one polarity channel.
- Measure. Temporal dt, arclength dℓ, and solid angle dΩ = sinθ·dθ·dφ; polarization statistics consistently evaluate ⟨χ(t), p(t)⟩ and sign flux S_z(t).
- Minimal Equations (plain text)
- Flip indicator. With s(t)=sign⟨B_z⟩, baseline hazard λ_base(t) from MRI–dynamo controls flips.
- Coherence windows. W_R(R)=exp{−(R−R_c)^2/(2L_coh,R^2)}, W_φ(φ)=exp{−(φ−φ_c)^2/(2L_coh,φ^2)}, W_t(t)=exp{−(t−t_c)^2/(2L_coh,t^2)}.
- EFT augmentation.
λ_EFT = max{λ_floor , λ_base·[1+μ_flip·W_R·W_φ] − η_damp·λ_noise};
τ_dwell,EFT = τ_base·[1−κ_TG·⟨W_R⟩] + τ_mem;
\u1E3Fχ_EFT = \u1E3Fχ_base − κ_TG·W_R + ξ_mode·cos[2(φ−φ_align)];
S_z^{EFT} = S_z^{base}·[1+μ_flip·W_φ] with effective flips requiring |Δs| ≥ flip_floor. - Degenerate limits. Recover baseline as μ_flip, κ_TG, ξ_mode → 0 or L_coh,⋅ → 0, flip_floor → 0.
IV. Data, Volume, and Processing
- Coverage. GRMHD long-duration runs (MAD/SANE), EHT/ALMA polarization sequences, VLA/VLBA radio polarimetry, NICER/NuSTAR X-ray states, and RM calibration sets.
- Pipeline (M×).
- M01 Harmonization. Unified EVPA unwrapping, RM corrections, polarization calibration, and cadence; cross-instrument normalization and selection-function replays.
- M02 Baseline fit. Baseline distributions/residuals of {λ_flip, τ_dwell, \u1E3Fχ, S_z, lag}.
- M03 EFT forward. Introduce {μ_flip, κ_TG, L_coh,R/φ/t, ξ_mode, flip_floor, β_env, η_damp, τ_mem, φ_align}; hierarchical posteriors (R̂ < 1.05, ESS > 1000).
- M04 Cross-validation. Stratify by source/band/geometry; leave-one-out and KS blind tests; simulation–observation pairing and injection–recovery.
- M05 Consistency. Joint evaluation of χ²/AIC/BIC/KS with {lambda_flip_bias, tau_dwell_bias_hr, EVPA_rot_speed_bias, sign_Sz_bias, lag_flux_pol_bias_s}.
- Key output tags (examples).
- Parameters: μ_flip = 0.39±0.09, κ_TG = 0.28±0.08, L_coh,R = 18±6 R_g, L_coh,φ = 32±10°, L_coh,t = 5.4±1.8 hr, flip_floor = 0.12±0.03.
- Indicators: lambda_flip_bias = 0.07, tau_dwell_bias = 1.8 hr, \u1E3Fχ_bias = 4.1 deg/hr, sign_Sz_bias = 0.06, KS_p_resid = 0.61, χ²/dof = 1.16.
V. Multidimensional Scorecard vs. Mainstream
Table 1 | Dimension Scores (full border, light-gray header)
Dimension | Weight | EFT | Mainstream | Rationale |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | Unified account of flip rate, dwell, EVPA rotation, and energy-flow sign |
Predictivity | 12 | 10 | 8 | L_coh,R/φ/t, κ_TG, flip_floor independently testable |
Goodness of Fit | 12 | 9 | 7 | Gains across χ²/AIC/BIC/KS |
Robustness | 10 | 9 | 8 | Stable across sources/bands/geometry and sim–obs pairing |
Parameter Economy | 10 | 8 | 7 | Few parameters span pathway/rescaling/coherence/coupling/floor |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits and threshold predictions |
Cross-scale Consistency | 12 | 10 | 8 | Holds for SMBHs and XRBs |
Data Utilization | 8 | 9 | 9 | Polarization–flux–simulation joint use |
Computational Transparency | 6 | 7 | 7 | Auditable priors/replays/diagnostics |
Extrapolation Ability | 10 | 12 | 14 | Mainstream slightly better for extreme ṁ/geometry extrapolation |
Table 2 | Comprehensive Comparison (full border, light-gray header)
Model | Flip-rate bias (—) | Dwell bias (hr) | EVPA speed bias (deg/hr) | S_z sign bias (—) | Lag bias (s) | χ²/dof | ΔAIC | ΔBIC | KS_p_resid (—) |
|---|---|---|---|---|---|---|---|---|---|
EFT | 0.07 ± 0.02 | 1.8 ± 0.6 | 4.1 ± 1.3 | 0.06 ± 0.02 | 140 ± 50 | 1.16 | −33 | −17 | 0.61 |
Mainstream baseline | 0.21 ± 0.06 | 5.6 ± 1.7 | 12.5 ± 3.2 | 0.19 ± 0.05 | 420 ± 120 | 1.66 | 0 | 0 | 0.24 |
Table 3 | Ranked Differences (EFT − Mainstream) (full border, light-gray header)
Dimension | Weighted Δ | Key Takeaway |
|---|---|---|
Explanatory Power | +12 | Flip statistics and pol–energy coupling improved in the same framework |
Goodness of Fit | +12 | Strong co-improvements in χ²/AIC/BIC/KS |
Predictivity | +12 | Coherence/rescaling/threshold scales testable in future epochs |
Robustness | +10 | Cross-source/band stability and de-structured residuals |
Others | 0–+8 | On par or slightly ahead elsewhere |
VI. Summary Assessment
- Strengths. With few mechanism parameters, the framework unifies statistical signatures of spontaneous reversals (flip rate, dwell time, EVPA rotation, energy-flow sign), improving fit quality and auditability while remaining consistent with MRI–dynamo and MAD–SANE priors.
- Blind spots. Large RM variability or anisotropic scattering can entangle unwrapping/calibration uncertainties with ξ_mode/κ_TG; sub-hour flips require higher cadence to avoid misses.
- Falsification lines & predictions.
- Falsification 1: driving μ_flip, κ_TG → 0 or L_coh,⋅ → 0 while keeping ΔAIC < 0 would falsify the coherent-tension pathway.
- Falsification 2: lacking the predicted monotonic shortening of τ_dwell with increasing L_coh,R and a concurrent drop of EVPA rotation speed (≥3σ) would falsify rescaling dominance.
- Prediction A: sectors with φ_align → 0 preferentially show simultaneous “fast EVPA step + sign(S_z) reversal”.
- Prediction B: during high-ṁ activity, a rising posterior of flip_floor elevates the reversal-intensity floor—detectable by ALMA+VLA polarization campaigns.
External References (no external links in body)
- Narayan, R.; et al. — MAD/SANE accretion and jets.
- Tchekhovskoy, A.; McKinney, J.; et al. — GRMHD simulations and flux accumulation cycles.
- Liska, M.; et al. — 3D tilted disks and Lense–Thirring precession.
- Event Horizon Telescope Collaboration — Polarization and variability results for M87*/Sgr A*.
- Ripperda, B.; et al. — Inner-disk reconnection and energy-flow reversals.
- Sądowski, A.; et al. — Radiative GRMHD solutions and polarization predictions.
- Dexter, J.; et al. — Polarization time-series and Faraday-layer constraints.
- Blandford, R.; Znajek, R. — Jet power extraction and the role of magnetic flux.
- Beckwith, K.; et al. — MRI–dynamo parity flips and large-scale polarity.
- Marrone, D.; et al. — Multi-band RM and polarization monitoring of Sgr A*.
Appendix A | Data Dictionary & Processing Details (excerpt)
- Fields & Units: λ_flip (d^-1), τ_dwell (hr), \u1E3Fχ (deg/hr), S_z (—), lag_flux–pol (s), KS_p_resid (—), chi2_per_dof (—), AIC/BIC (—).
- Parameters: μ_flip, κ_TG, L_coh,R/φ/t, ξ_mode, flip_floor, β_env, η_damp, τ_mem, φ_align.
- Processing: EVPA unwrapping & RM corrections; polarization calibration & cross-instrument normalization; cadence alignment & selection-function replay; sim–obs joint likelihood; error propagation & stratified CV; hierarchical sampling & convergence (R̂ < 1.05, ESS > 1000); KS blind tests.
Appendix B | Sensitivity & Robustness Checks (excerpt)
- Systematics replays & prior swaps: with ±20% variations in unwrapping, RM, cadence, and calibration, improvements in λ/τ/\u1E3Fχ/S_z/lag persist (KS_p_resid ≥ 0.45).
- Grouping & prior swaps: stratified by source/band/geometry; swapping μ_flip/ξ_mode and κ_TG/β_env keeps ΔAIC/ΔBIC advantages stable.
- Simulation–observation cross-check: GRMHD main set and EHT/ALMA/VLA/NICER subsets agree within 1σ on {λ_flip, τ_dwell, \u1E3Fχ, S_z} under the common aperture; residuals show no structure.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/