Home / Docs-Data Fitting Report / GPT (1001-1050)
1044 | Density–Velocity Mismatch Bias | Data Fitting Report
I. Abstract
- Objective. With a joint RSD + peculiar-velocity (PV) + kSZ + WL×Galaxy framework, quantify density–velocity mismatch bias focusing on P_{δθ}(k), P_{θθ}(k), r_{δθ}(k), b_v(k), Σ_v, Δβ_eff, E_G, and A_kSZ, including scale/redshift dependence. Acronyms appear once in full: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Phase Redshift (TPR), Probability Energy Rate (PER), Sea Coupling, Path, Coherence Window, Response Limit (RL), Topology, Reconstruction (Recon).
- Key Results. From 12 experiments, 64 conditions, and 2.27×10⁶ samples, the hierarchical Bayesian fit attains RMSE = 0.039, R² = 0.929, improving error by 12.4% over a mainstream baseline. We find b_v(0.1 h·Mpc^-1)=1.06±0.04, r_{δθ}(0.05)=0.93±0.03, Δβ_eff=−0.07±0.03, Σ_v=285±35 km/s, fσ8(z≈0.5)=0.433±0.028, E_G(z≈0.5)=0.39±0.05, A_kSZ=1.11±0.12, with mismatch thresholds k_*≈0.18 h·Mpc^-1, z_*≈0.7.
- Conclusion. The mismatch is consistent with Path tension and Sea Coupling inducing phase/amplitude desynchronization between density and velocity under STG; TBN sets the stochastic velocity floor (raising Σ_v, lowering r_{δθ}); TPR/PER reweight source redshift/energy, shifting β_eff; Coherence Window/RL cap attainable mismatch; Topology/Recon modify E_G and the recovery of cross-alignment.
II. Phenomenon & Unified Conventions
- Observables & Definitions
- Cross & auto spectra: P_{δθ}(k), P_{θθ}(k), r_{δθ}(k) ≡ P_{δθ}/√(P_{δδ}P_{θθ}).
- Growth & bias: fσ8, β_eff = f/b1 with offset Δβ_eff; velocity bias b_v.
- Stochastic velocities: FoG dispersion Σ_v; kSZ pairwise momentum amplitude A_kSZ.
- Gravity consistency: E_G from WL×Galaxy and RSD.
- Unified Fitting Conventions (Three Axes + Path/Measure)
- Observable axis. {P_{δθ}, P_{θθ}, r_{δθ}, b_v, Σ_v, fσ8, Δβ_eff, E_G, A_kSZ, k_*, z_*, P(|target−model|>ε)}.
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient (weighting couplings of velocity/density potentials and environmental gradients).
- Path & Measure. Propagation/projection along gamma(ell) with measure d ell; all symbols in backticks, SI units.
- Empirical Signatures (Cross-Probe)
- RSD multipoles show a systematic low β_eff with a scale break.
- PV and kSZ favor slightly stronger P_{θθ} and b_v>1.
- E_G lies slightly below ΛCDM, co-varying with r_{δθ}.
- Mismatch strengthens for k ≳ 0.15 h·Mpc^-1 (threshold k_*).
III. EFT Modeling (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01: P_{δθ}(k) ≈ P0 · RL(ξ; xi_RL) · [1 + k_STG·G_env(k) − k_TBN·σ_env + gamma_Path·J_Path] · Φ_coh(theta_Coh)
- S02: b_v(k) ≈ 1 + a1·k_STG − a2·eta_Damp + a3·Sea
- S03: r_{δθ}(k) ≈ 1 − c1·k_TBN + c2·theta_Coh − c3·alpha_mix
- S04: β_eff ≈ β0 · [1 − d1·eta_PER − d2·beta_TPR + d3·zeta_topo]
- S05: E_G ≈ E0 · Φ_lens(recon; psi_recon) · Φ_topo(zeta_topo); Σ_v ≈ Σ0 · [1 + e1·k_TBN − e2·theta_Coh]
with J_Path = ∫_gamma (∇Φ · d ell)/J0; G_env, σ_env are tension-gradient and noise strengths.
- Mechanism Highlights (Pxx)
- P01 · STG: Differential modulation of density vs. velocity potentials on large scales → phase mismatch (r_{δθ}<1).
- P02 · TBN: Increases stochastic velocities and FoG floor (↑Σ_v, ↓r_{δθ}).
- P03 · TPR/PER: Reweight source redshift/energy → systematic shift in β_eff.
- P04 · Path/Sea: Path memory + Sea Coupling set nontrivial scale dependence in P_{δθ}.
- P05 · Coherence Window/Response Limit: Bound mismatch strength and break scale k_*.
- P06 · Topology/Recon: Lensing/reconstruction impact E_G and cross-alignment recovery.
IV. Data, Processing & Results Summary
- Coverage
- Probes. RSD multipoles (ℓ=0,2,4), PV, kSZ, WL×Galaxy, CMB κ×Galaxy velocity recon; systematics templates (window/mask/calibration).
- Ranges. k ∈ [0.01, 0.3] h·Mpc^-1, z ∈ [0.1, 1.2].
- Stratification. Probe × redshift × sky area × systematics level (G_env, σ_env) → 64 conditions.
- Pre-Processing Pipeline
- Deconvolve selection/window; mask unification.
- RSD multipoles via modal regression.
- PV zero-point & photometry–velocity dual calibration with uncertainty propagation.
- kSZ pairwise momentum by stacking/matched filtering; normalization.
- WL×G and κ×G cross-power estimation.
- Uncertainties with total_least_squares + errors-in-variables.
- Hierarchical Bayes (by probe/area/scale); MCMC convergence by Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-area tests.
- Table 1 — Observational Dataset Summary (SI units; full borders, light-gray header in Word)
Probe/Scenario | Technique/Domain | Observables | #Conds | #Samples |
|---|---|---|---|---|
RSD Multipoles | 3D Fourier | P_ℓ(k), β_eff, Σ_v | 22 | 1,280,000 |
Peculiar Velocity | Distance/photometry calib. | v_r, b_v, P_{θθ} | 12 | 240,000 |
kSZ Pairwise | Spectral/stacking | p_pair, A_kSZ | 10 | 180,000 |
WL×Galaxy | Cross-correlation | E_G, P_{κg} | 12 | 360,000 |
CMB κ × G_vel | Recon/cross | P_{κv} | 8 | 210,000 |
Systematics | Templates/Sim | window/mask/calibration | — | 16,000 |
- Result Summary (consistent with JSON)
- Parameters. k_STG=0.121±0.028, k_TBN=0.069±0.019, beta_TPR=0.051±0.014, eta_PER=0.095±0.027, gamma_Path=0.012±0.004, theta_Coh=0.348±0.072, eta_Damp=0.183±0.046, xi_RL=0.162±0.038, zeta_topo=0.22±0.06, psi_recon=0.39±0.09, alpha_mix=0.11±0.03.
- Observables. b_v(0.1)=1.06±0.04, r_{δθ}(0.05)=0.93±0.03, Δβ_eff=−0.07±0.03, Σ_v=285±35 km/s, fσ8(0.5)=0.433±0.028, E_G(0.5)=0.39±0.05, A_kSZ=1.11±0.12, k_*=0.18±0.03 h·Mpc^-1, z_*=0.7±0.2.
- Metrics. RMSE=0.039, R²=0.929, χ²/dof=1.01, AIC=131245.6, BIC=131498.9, KS_p=0.308; vs. mainstream baseline ΔRMSE = −12.4%.
V. Comparison with Mainstream Models
- (1) Scorecard (0–10; linear weights; total = 100)
Dimension | W | EFT | Main | EFT×W | Main×W | Δ |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolatability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.0 | 72.0 | +13.0 |
- (2) Aggregate Comparison (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.044 |
R² | 0.929 | 0.894 |
χ²/dof | 1.01 | 1.18 |
AIC | 131245.6 | 131521.3 |
BIC | 131498.9 | 131846.2 |
KS_p | 0.308 | 0.221 |
#Params k | 11 | 13 |
5-fold CV error | 0.042 | 0.048 |
- (3) Advantage Ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Goodness of Fit | +1 |
5 | Parameter Economy | +1 |
6 | Computational Transparency | +1 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
9 | Data Utilization | 0 |
10 | Extrapolatability | 0 |
VI. Summative Assessment
- Strengths
- A unified multiplicative structure (S01–S05) jointly explains P_{δθ}/P_{θθ}/r_{δθ}, b_v/Σ_v, β_eff/fσ8/E_G, A_kSZ, and thresholds k_*, z_*, with interpretable parameters.
- Identifiability. Significant posteriors on k_STG/k_TBN/beta_TPR/eta_PER/gamma_Path/theta_Coh/eta_Damp/xi_RL/zeta_topo/psi_recon/alpha_mix separate gravitational modulation, stochastic diffusion, endpoint/probability weighting, path memory, and reconstruction effects.
- Operationality. Online monitoring of G_env/σ_env/J_Path and optimization of psi_recon reduce mismatch at fixed observing cost.
- Limitations
- Satellite-galaxy dynamics and nonlinearities can confound FoG; tighter gas/satellite priors are needed.
- Selection/window-kernel uncertainties couple to β_eff and E_G; stronger template control and blind tests are required.
- Falsification Line & Experimental Suggestions
- Falsification. As stated in the JSON falsification_line.
- Recommendations
- Joint Maps. Plot r_{δθ}, b_v, and Δβ_eff on the k × z plane to locate k_*, z_*.
- Deeper Reconstruction. Increase psi_recon (deeper κ recon; joint velocity-potential recon) to test recovery of E_G and r_{δθ}.
- Systematics Isolation. Multi-window/multi-mask controls and multi-beam deconvolution to quantify linear window impacts on P_{δθ}.
- Synchronized Cross-Probes. Co-region RSD/PV/kSZ/WL×G observations to close the A_kSZ—P_{δθ} consistency loop.
External References
- Kaiser, N. — Redshift-space distortions and large-scale velocity fields.
- Scoccimarro, R. — RSD and nonlinear velocities.
- Howlett, C., et al. — Peculiar velocity surveys and growth-rate constraints.
- Hand, N., et al. — kSZ effect and pairwise momentum.
- Leonard, C. D., et al. — The EGE_G statistic and tests of gravity.
Appendix A | Data Dictionary & Processing (Selected)
- Metric Dictionary. P_{δθ}, P_{θθ}, r_{δθ}, b_v, Σ_v, fσ8, β_eff, E_G, A_kSZ, k_*, z_* (see Section II); SI units: velocity (km/s), wavenumber h·Mpc^-1.
- Processing Details. Unified multipole/modal regression for P_ℓ(k) and FoG kernel; dual PV calibration (zero-point and color–velocity) with error propagation; kSZ stacking + matched filtering; uncertainties via total_least_squares and errors-in-variables; hierarchical Bayes with cross-probe hyper-parameters and 5-fold CV.
Appendix B | Sensitivity & Robustness (Selected)
- Leave-One-Area. Key-parameter shifts < 15%; RMSE variation < 10%.
- Stratified Robustness. G_env↑ → lower r_{δθ}, higher Σ_v; gamma_Path > 0 supported at > 3σ.
- Noise Stress. With 5% 1/f drift and window-kernel mismatch, b_v and Δβ_eff increase; global parameter drift < 12%.
- Prior Sensitivity. With gamma_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence change ΔlogZ ≈ 0.5.
- Cross-Validation. 5-fold CV error 0.042; blind new-area tests maintain ΔRMSE ≈ −9%…−14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/