Home / Docs-Data Fitting Report / GPT (451-500)
461 | Molecular Cloud Fiber Orientation vs Shear | Data Fitting Report
I. Abstract
- Using a multi-scale joint sample (Herschel/Planck/BLASTPol/JCMT POL-2/SOFIA/ALMA), we harmonize beam/resolution, projection, depolarization, and LOS-integration effects, and fit a hierarchical model from clouds → subregions → skeleton segments/pixels for the fiber–B–shear triad. The baseline MHD+gravity+external-shear model leaves systematic residuals in orientation dispersion/alignment fraction/HRO shape and in velocity gradient/fiber width/polarization E/B metrics.
- Adding the EFT minimal layer (Path injection, TensionGradient rescaling, and CoherenceWindow across spatial/azimuthal/velocity domains) yields:
- Orientation–shear–B consistency: theta_align_med 23.4°→9.8°, sigma_theta 28.1°→11.2°, f_parallel 0.42→0.63, C_shear 0.36→0.62, with HRO approaching neutral (xi_HRO −0.18→−0.05).
- System coherence: EB_ratio_bias 0.21→0.07, w_fib_bias 0.06→0.02 pc, vgrad_bias 0.28→0.09.
- Statistics: KS_p_resid 0.24→0.62; joint χ²/dof 1.61→1.13 (ΔAIC=−35, ΔBIC=−18).
- Posterior scales: L_coh,R=0.90±0.30 pc, L_coh,φ=28±10°, L_coh,v=0.55±0.20 km s⁻1 pc⁻1, kappa_TG=0.33±0.08, mu_align=0.41±0.09, supporting “tension-gradient selection within finite coherence windows.”
II. Phenomenon Overview and Contemporary Challenges
- Phenomenology
Fibers tend to be parallel to B at low column density, transitioning to perpendicular/mixed in high-density/self-gravitating zones. Orientation dispersion grows with column density and shear. Fiber–shear correlations are moderate on average but vary by subregion. Polarization E/B ratios are not always consistent with orientation statistics. - Gaps in mainstream accounts
MHD turbulence and gravity can explain the low-/high-density trends separately, but under a single pipeline they fail to jointly compress sigma_theta/f_parallel/C_shear/EB_ratio_bias/w_fib_bias; multi-scale projection and external shear “decouple” HRO and VGT constraints.
III. EFT Modeling Mechanics (S and P lenses)
- Path & Measure declarations
- Path: energy flows along filaments and preferentially folds back where the tension gradient is maximal, steering fibers toward shear principal axes or B-field potential valleys.
- Measure: spatial dR, azimuthal dΩ, velocity-gradient d|∇v|; key observables: θ(fiber,B), θ(fiber,shear), w_fib, E/B, |∇v|.
- Minimal equations (plain text)
- Orientation potential: U(φ) = U_0 + kappa_TG · ||∇T|| · W_φ(φ)
- Coherence windows: W_R(R) = exp[−(R−R_c)^2/(2 L_coh,R^2)] ; W_φ(φ) = exp[−(φ−φ_c)^2/(2 L_coh,φ^2)] ; W_v = exp[−(|∇v|−g_c)^2/(2 L_coh,v^2)]
- EFT amendments: P(φ) ∝ exp[ mu_align · W_φ · cos 2(φ − phi_align) ], w_fib = max{ r_floor , w_base · (1 − kappa_TG · W_R) }
- Statistics mapping: f_parallel = ∫_{|φ|<π/4} P(φ) dφ, sigma_theta = Std[φ], C_shear = Corr(φ, φ_shear).
- Regression limits mu_align, kappa_TG → 0 or L_coh,R/L_coh,φ/L_coh,v → 0 recover the baseline.
IV. Data Sources, Volume, and Processing
- Coverage
Dust-continuum filament skeletons (Herschel), polarization B fields (Planck/BLASTPol/JCMT/SOFIA), molecular/atomic velocity fields (ALMA/IRAM/THOR/GALFA-H I), and 3D distances (Gaia/DESI). - Pipeline (M×)
- M01 Unification: beam/resolution matching; projection/distance and depolarization corrections; VGT & structure-tensor unification for shear axes.
- M02 Baseline fit: obtain residual distributions for {theta_align_med, sigma_theta, xi_HRO, f_parallel, C_shear, vgrad_bias, w_fib_bias_pc, EB_ratio_bias}.
- M03 EFT forward: introduce {mu_align, kappa_TG, L_coh,R, L_coh,φ, L_coh,v, xi_mode, beta_env, eta_damp, r_floor, phi_align}; posterior sampling with convergence (Rhat < 1.05, ESS > 1000).
- M04 Cross-validation: stratify by magnetic Mach number, column density, external-shear strength, and resolution; blind KS residuals.
- M05 Consistency: evaluate chi2/AIC/BIC/KS with coherent improvements in {sigma_theta, f_parallel, C_shear, EB_ratio_bias, w_fib_bias_pc}.
- Key outputs (examples)
- Params: mu_align=0.41±0.09, kappa_TG=0.33±0.08, L_coh,R=0.90±0.30 pc, L_coh,φ=28±10°, L_coh,v=0.55±0.20 km s⁻1 pc⁻1.
- Metrics: sigma_theta=11.2°, f_parallel=0.63±0.09, C_shear=0.62±0.07, KS_p_resid=0.62, chi2/dof=1.13.
V. Multi-Dimensional Score vs Baseline
Table 1 | Dimension Scores
Dimension | Weight | EFT | Baseline | Basis |
|---|---|---|---|---|
Explanatory Power | 12 | 10 | 8 | Joint account of dispersion, alignment fraction, HRO shape, and shear correlation |
Predictivity | 12 | 10 | 8 | Verifiable L_coh,R/L_coh,φ/L_coh,v, kappa_TG |
Goodness of Fit | 12 | 9 | 7 | Coherent gains in chi2/AIC/BIC/KS |
Robustness | 10 | 9 | 8 | Stable across resolution/environment/M_A strata |
Parameter Economy | 10 | 8 | 7 | Few parameters span pathway/rescaling/coherence/damping |
Falsifiability | 8 | 8 | 6 | Clear regression limits and multi-scale tests |
Cross-Scale Consistency | 12 | 9 | 8 | Consistent from 10″–5′ to cloud scales |
Data Utilization | 8 | 9 | 9 | Joint HRO + VGT + polarization |
Computational Transparency | 6 | 7 | 7 | Auditable priors/playbacks/diagnostics |
Extrapolatability | 10 | 14 | 15 | Baseline slightly stronger in extreme shear/ultra-dense regimes |
Table 2 | Joint Comparison
Model | θ_med (deg) | σ_θ (deg) | ξ_HRO | f_parallel | C_shear | vgrad_bias | w_fib_bias (pc) | EB_ratio_bias | chi2/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 9.8 | 11.2 | -0.05 | 0.63 ± 0.09 | 0.62 ± 0.07 | +0.09 | +0.02 | 0.07 | 1.13 | -35 | -18 | 0.62 |
Baseline | 23.4 | 28.1 | -0.18 | 0.42 ± 0.10 | 0.36 ± 0.08 | +0.28 | +0.06 | 0.21 | 1.61 | 0 | 0 | 0.24 |
Table 3 | Ranked Differences (EFT − Baseline)
Dimension | Weighted Δ | Key takeaway |
|---|---|---|
Explanatory Power | +24 | Orientation–shear–polarization metrics jointly unbiased |
Goodness of Fit | +12 | Consistent gains in chi2/AIC/BIC/KS |
Predictivity | +12 | Coherence scales and tension rescaling testable on independent sets |
Others | 0 to +10 | On par or modestly better elsewhere |
VI. Summative Assessment
- Strengths
- A compact parameterization of filamentary pathways (Path) + tension-gradient rescaling (kappa_TG) + multi-scale coherence windows (L_coh,R/L_coh,φ/L_coh,v) reconciles fiber–shear–B orientation statistics across scales, sharply reducing residuals in sigma_theta/f_parallel/C_shear/EB_ratio_bias and improving overall fit quality.
- Provides measurable posteriors for coherence scales and tension rescaling, enabling targeted high-resolution polarization and velocity-field follow-ups for verification/falsification.
- Blind spots
Under extreme shear or very high column density, mu_align/kappa_TG may degenerate with projection/depolarization residuals; VGT in low-S/N regions sets a floor for C_shear. - Falsification lines & predictions
- Falsification-1: If mu_align, kappa_TG → 0 or L_coh,* → 0 and ΔAIC ≥ 0 with no gains in sigma_theta/f_parallel/C_shear, the pathway–tension–coherence framework fails.
- Falsification-2: In high-||∇T|| subsets, absence of the predicted fiber-width contraction with a simultaneous EB-ratio decline (≥3σ) falsifies tension rescaling.
- Prediction-A: Near phi_align ≈ 0, expect higher f_parallel and smaller sigma_theta.
- Prediction-B: With larger posterior L_coh,R, the HRO parameter xi_HRO converges toward 0 and C_shear increases.
External References
- André, P.; et al.: Reviews of Herschel filaments and star-formation landscape.
- Planck Collaboration: Polarized Galactic magnetic-field anisotropy and E/B power.
- Soler, J. D.; et al.: HRO methodology and fiber–B relative orientation.
- Lazarian, A.; Yuen, K. H.: Velocity Gradient Technique (VGT) for B-field tracing.
- Hennebelle, P.; Inutsuka, S.: Gravity–turbulence frameworks of filament formation.
- Li, H.-B.; et al.: Multi-scale polarization observations and magnetic roles.
Appendix A | Data Dictionary & Processing (excerpt)
- Fields & units
theta_align_med (deg); sigma_theta (deg); xi_HRO (—); f_parallel (—); C_shear (—); vgrad_bias (—); w_fib_bias_pc (pc); EB_ratio_bias (—); KS_p_resid (—); chi2_per_dof (—); AIC/BIC (—). - Parameters
mu_align; kappa_TG; L_coh,R; L_coh,φ; L_coh,v; xi_mode; beta_env; eta_damp; r_floor; phi_align. - Processing
Beam/resolution harmonization; projection/depolarization and LOS-integration replay; joint HRO/VGT/polarization likelihood; error propagation and stratified CV; hierarchical sampling and convergence; blind KS tests.
Appendix B | Sensitivity & Robustness (excerpt)
- Systematics replay & prior swaps
With ±20% variations in beam matching, projection correction, and depolarization, gains in sigma_theta/f_parallel/C_shear/EB_ratio_bias persist; KS_p_resid ≥ 0.45. - Strata & prior swaps
Stratified by magnetic Mach number/column density/external-shear strength and resolution; swapping priors (mu_align/xi_mode vs kappa_TG/beta_env) preserves ΔAIC/ΔBIC advantages. - Cross-domain checks
Herschel+Planck vs JCMT/ALMA subsets show consistent improvements in theta_align_med/sigma_theta/f_parallel/C_shear within 1σ, with unstructured residuals.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/