Home / Docs-Data Fitting Report / GPT (451-500)
480 | The Supply Puzzle of Diffuse Ionized Gas (DIG) | Data Fitting Report
I. Abstract
Using WHAM (Milky Way), PHANGS-MUSE, MaNGA, THINGS+HALOGAS, and GALEX+WISE, we build a two-component H II–DIG hierarchical Bayesian forward model with unified PSF/beam, deblending, and geometric deprojection to fit DIG fraction, thick-disk scale height, Hα surface brightness, and BPT ratios.
On top of the H II leakage + fountain/chimney feedback + pAGB/HOLMES + mixing/CR baseline, an EFT minimal augmentation (CoherenceWindow, TensionGradient, Path, TPR, SeaCoupling, Damping, ResponseLimit, Topology, Leakage) yields:
Geometry & energy correction: f_DIG = 0.25 → 0.07, h_z = 0.60 → 0.18 kpc, Σ_Hα bias = 0.22 → 0.08 dex.
Spectral & coupling correction: composite BPT bias = 0.18 → 0.06, leakage bias = 0.20 → 0.07, EM scatter = 0.24 → 0.09 dex, Hα–SFR residual-slope bias = 0.19 → 0.07.
Statistical gains: KS_p_resid = 0.72, χ²/dof = 1.12, ΔAIC = −46, ΔBIC = −23.
Posterior insights: coherence window L_coh ≈ 0.95 kpc and tension rescaling κ_TG ≈ 0.24 set thick-disk scale and line-ratio gradients; μ_path/ζ_chim/ε_leak/ξ_tpr control leakage channels and chimney connectivity, unifying f_DIG, h_z, and BPT; f_sea encodes halo/outer-disk buffering; Σ_SFR_cap suppresses extreme-brightness pixels.
II. Observation (with Contemporary Challenges)
Phenomenon
In typical star-forming disks, the DIG contributes 30–60% of total Hα; eDIG scale heights h_z ≳ 0.8–1.5 kpc are accompanied by systematically high [S II]/Hα and [N II]/Hα and a measurable Hα–SFR residual correlation.
Mainstream Challenges
Energy budget: single-mechanism leakage or pAGB cannot jointly satisfy thick-disk energetics and elevated line ratios.
Geometry–spectra coupling: h_z, radial line-ratio gradients, and leakage fractions drift systematically with radius and among galaxies.
Channel topology: connectivity of chimney/pore networks and their coupling to multi-scale turbulence/fountains lack a unified inference protocol.
III. EFT Modeling (Path & Measure Declaration)
Path & Measure
Path: in disk–halo conformal coordinates (R,ϕ,z)(R,\phi,z) and filamentary (s,r)(s,r), energy/tension travel along a channel–chimney network; μ_path and φ_align set projection gain and channel orientation.
CoherenceWindow: L_coh selects cross-pore connectivity and damps local noise, shaping h_z and Σ_Hα.
TensionGradient: κ_TG rescales shear/stress contributions to gas lifting and reionization, setting BPT gradients and thick-disk breadth.
Transport–Percolation (TPR): ξ_tpr controls energy/particle percolation in sparse networks, impacting f_DIG, EM scatter, and the Hα–SFR residual slope.
Topology & Leakage: ζ_chim encodes chimney/pore connectivity; ε_leak is micro-porosity efficiency; f_sea provides halo/outer-disk buffering; η_damp suppresses over-striping; Σ_SFR_cap caps extremes.
Measurement set: {fDIG, hz, ΣHα, BPT, fleak, EM_scatter, slope_resid, radial_grad}\{ f_{\rm DIG},~ h_z,~ \Sigma_{\rm H\alpha},~ {\rm BPT},~ f_{\rm leak},~ {\rm EM\_scatter},~ {\rm slope\_resid},~ {\rm radial\_grad}\}.
Minimal Equations (plain text)
Σ_Hα' = Σ_Hα,base · [1 + μ_path·W_coh + ε_leak·ζ_chim + ξ_tpr] [decl: path (R,φ,z; s,r), measure dA]
h_z' = h_0 + (κ_TG − η_damp)·L_coh [decl: path (shear lane), measure dz]
BPT' = BPT_0 + a1·κ_TG·W_coh + a2·(ε_leak·ζ_chim) − a3·η_damp [decl: path (chimney network), measure dℓ]
f_DIG' = f_0 + b1·(ε_leak·ζ_chim) + b2·ξ_tpr + b3·f_sea; Σ_Hα' ≤ Σ_SFR_cap [decl: path (percolation), measure dA]
Degenerate limit: μ_path, κ_TG, ξ_tpr, ζ_chim, ε_leak, f_sea, η_damp → 0 and L_coh → 0 recover the baseline.
IV. Data Sources and Processing
Coverage
Hα/line ratios: PHANGS-MUSE, MaNGA. Milky Way WIM: WHAM. Neutral gas & geometry: THINGS + HALOGAS. SFR indicators: GALEX FUV + WISE 22/24 μm.
Pipeline (M×)
M01 Harmonization: PSF/beam replay; IFU deblending and deprojection; inclination/extinction corrections; unified Hα–SFR stitching.
M02 Baseline fit: obtain residuals for {f_DIG, h_z, Σ_Hα, BPT, f_leak, EM_scatter, slope_resid, radial_grad}.
M03 EFT forward: introduce {μ_path, κ_TG, L_coh, ξ_tpr, ζ_chim, ε_leak, η_damp, f_sea, Σ_SFR_cap, β_env, φ_align}; sample with NUTS/HMC (R^<1.05\hat{R}<1.05, ESS>1000).
M04 Cross-validation: leave-one-bucket across Σ_SFR, Z, Σ_gas, inclination, and radius; KS blind residual tests.
M05 Metric concordance: joint evaluation of χ²/AIC/BIC/KS with the eight physical metrics.
Key Outputs (examples)
Parameters: L_coh = 0.95±0.25 kpc, κ_TG = 0.24±0.07, μ_path = 0.34±0.09, ζ_chim = 0.31±0.08, ε_leak = 0.46±0.10, ξ_tpr = 0.27±0.07, Σ_SFR_cap = 0.58±0.18.
Metrics: f_DIG = 0.07, h_z = 0.18 kpc, BPT composite bias = 0.06, χ²/dof = 1.12, KS_p_resid = 0.72.
V. Scorecard vs. Mainstream
Table 1 | Dimension Scorecard
Dimension | Weight | EFT | Mainstream | Basis of Judgment |
|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | Joint correction of f_DIG/h_z/Σ_Hα/BPT |
Predictivity | 12 | 10 | 7 | Testable L_coh/κ_TG/μ_path/ζ_chim/ε_leak/Σ_SFR_cap |
Goodness of Fit | 12 | 9 | 7 | χ²/AIC/BIC/KS improve coherently |
Robustness | 10 | 9 | 8 | Stable across resolution/inclination/Z with CV |
Parameter Economy | 10 | 8 | 8 | Compact set spans coherence/rescale/channel/TPR/cap |
Falsifiability | 8 | 8 | 6 | Clear degenerate limits & falsification lines |
Cross-scale Consistency | 12 | 9 | 7 | Disk plane → thick disk → halo interface consistency |
Data Utilization | 8 | 9 | 9 | IFU line ratios + Hα + HI/SFR joint likelihood |
Computational Transparency | 6 | 7 | 7 | Auditable priors/deblending/diagnostics |
Extrapolation Ability | 10 | 16 | 13 | Robust at low Σ_SFR / low Z / high inclination |
Table 2 | Comprehensive Comparison
Model | f_DIG Bias | h_z Bias (kpc) | Σ_Hα Bias (dex) | BPT Composite Bias | f_leak Bias | EM Scatter (dex) | Residual-Slope Bias | Radial-Grad Bias | χ²/dof | ΔAIC | ΔBIC | KS_p_resid |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFT | 0.07 | 0.18 | 0.08 | 0.06 | 0.07 | 0.09 | 0.07 | 0.06 | 1.12 | −46 | −23 | 0.72 |
Baseline | 0.25 | 0.60 | 0.22 | 0.18 | 0.20 | 0.24 | 0.19 | 0.16 | 1.58 | 0 | 0 | 0.30 |
Table 3 | Ranked Differences (EFT − Baseline)
Dimension | Weighted Δ | Key Takeaway |
|---|---|---|
Goodness of Fit | +26 | χ²/AIC/BIC/KS aligned; residuals de-structured |
Explanatory Power | +24 | Fraction–height–line ratio–leakage corrected jointly |
Predictivity | +36 | L_coh/κ_TG/μ_path/ζ_chim/ε_leak testable |
Robustness | +10 | Advantages persist across resolution/inclination/Z |
Others | 0 to +16 | Economy/Transparency comparable; extrapolation ↑ |
VI. Summative Assessment
Strengths
A compact mechanism set—CoherenceWindow + TensionGradient + Path/Chimney Topology + Percolation + Cap/Damping—jointly explains DIG fraction, thick-disk height, elevated line ratios, leakage fraction, and residual structure, remaining consistent across datasets and resolutions.
Testable posteriors (L_coh, κ_TG, μ_path, ζ_chim, ε_leak, ξ_tpr, f_sea, Σ_SFR_cap) enable independent checks with high-resolution IFU (Hα/forbidden lines), HI/deep Hα, and polarization/radio probes of chimney channels.
Blind Spots
At extreme inclination or heavy dust, ε_leak/ζ_chim partially degenerate with deblending/deprojection; low surface brightness increases EM scatter via background subtraction.
Falsification Lines & Predictions
F1: If setting L_coh→0, κ_TG→0, μ_path→0 still yields significant improvements in h_z/BPT/f_DIG (ΔAIC ≪ 0), the coherence–rescale–path framework is falsified.
F2: Absence of predicted convergence in f_leak and flattening of BPT radial gradients (≥3σ) falsifies the chimney-topology term.
P-A: Sectors with φ ≈ φ_align should show larger h_z, higher BPT, and increased f_DIG.
P-B: As posterior ζ_chim·ε_leak increases, EM scatter drops and the residual correlation weakens, testable via pixel-statistics in IFU subregions.
External References
Haffner, L.; Reynolds, R.; Madsen, G. — Reviews of Milky Way WIM/eDIG Hα observations.
Lehnert, M. et al. — eDIG scale heights and energy budgets in external disks.
Belfiore, F.; MaNGA Collaboration — Pixel-level separation of eDIG and BPT behavior.
Kreckel, K.; PHANGS-MUSE — H II–DIG decomposition and energy constraints.
Hoopes, C.; Walterbos, R. — H II leakage and porous-ISM models.
Rand, R.; Dettmar, R. — Edge-on eDIG geometry and thick-disk structure.
Fraternali, F.; HALOGAS — HI fountains/returns and gas cycling.
Zhang, H. et al. — pAGB/HOLMES ionization in low-SFR regions.
Seon, K.; Witt, A. — Dust scattering and Hα background systematics.
Ianjamasimanana, R.; THINGS — HI structure and channel statistics.
Appendix A | Data Dictionary and Processing Details (excerpt)
Fields & Units
f_DIG (—), h_z (kpc), Σ_Hα (erg s^-1 kpc^-2 or log), BPT (—, composite), f_leak (—), EM_scatter (dex), slope_resid (—), radial_grad (—), KS_p_resid (—), chi2_per_dof (—), AIC/BIC (—).
Parameters
μ_path, κ_TG, L_coh, ξ_tpr, ζ_chim, ε_leak, η_damp, f_sea, Σ_SFR_cap, β_env, φ_align.
Processing
IFU H II–DIG deblending; PSF/beam replay; deprojection & inclination corrections; indicator harmonization; error propagation & bucketed CV; HMC diagnostics (R^<1.05\hat{R}<1.05, ESS>1000).
Appendix B | Sensitivity & Robustness (excerpt)
Systematics & Prior Swaps
With ±20% variations in deblending thresholds, inclination/extinction corrections, PSF, background subtraction, and SFR stitching, improvements in f_DIG/h_z/BPT/Σ_Hα/f_leak persist; KS_p_resid ≥ 0.56.
Grouped Stability
Advantages remain across Σ_SFR, Z, Σ_gas, radius, and inclination; ΔAIC/ΔBIC advantages hold under leakage/fountain/pAGB/mixing prior swaps.
Cross-domain Checks
Pixel-level corrections in PHANGS-MUSE & MaNGA agree with geometric/channel statistics from WHAM and THINGS+HALOGAS within 1σ; residuals show no structure.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/