Home / Docs-Data Fitting Report / GPT (501-550)
544 | GRB Lag–Redshift Relation Residuals | Data Fitting Report
I. Abstract
Objective. Fit, in a unified framework, the systematic residuals of the GRB observed lag–redshift relation, r_lag(z), and test the EFT synergy—Path (LOS mixing) × Topology/TBN (boundaries/potential barriers) × STG/TPR (tension-gradient & thermo-pressure coupling) × CoherenceWindow × Damping/ResponseLimit × Recon (intermittent injection)—against mainstream baselines (pure (1+z) stretch, selection/SNR effects only, single-parameter LIV).
Data. Five consolidated samples (GBM/BAT/Konus/INTEGRAL/LAT; 6,750 entries with redshift & band info) with unified lag definitions, bands, and instrument responses.
Key results. Relative to the best baseline, EFT improves AIC/BIC/chi2_per_dof/R2/KS_p (e.g., ΔAIC = −335.4, R2 = 0.81, chi2/dof = 1.05) and, with one parameter set, reproduces residual slope/curvature, energy dependence, partial-correlation structure, and hierarchical scatter.
Mechanism. Source-internal Recon pulses acting under TBN/STG constraints create a finite coherence window; together with Path mixing this yields systematic positive/negative residuals beyond (1+z) scaling, while Damping/ResponseLimit bound extreme short/long lags and high-energy residuals.
II. Phenomenon & Unified Conventions
(A) Definitions
Observed lag via channel/energy-pair CCF or wavelet packets: τ_obs; rest-frame lag: τ_rest = τ_obs / (1+z).
Baseline prediction: τ̂_lag,base(z); residual: r_lag(z) = τ_rest − τ̂_lag,base(z).
Targets: dr/dz, d²r/dz², energy gradient ∂r/∂logE, and partial correlation Corr[r, z | {E_p, L_iso, SNR}].
(B) Mainstream overview
(1+z) only: no source propagation kernel or LOS mixing; cannot explain systematic curvature and energy gradients.
Selection effects: induce apparent shifts, but fail to reproduce residual sign structure & energy slopes under hierarchical modeling.
Single-parameter LIV: fits part of energy trends but lacks closure with coherence window & LOS mixing.
(C) EFT essentials
Path × TBN: multi-zone emission / LOS superposition introduces geometric–energy biases.
STG × TPR: modulate local acceleration and kernel width/skew.
CoherenceWindow (τ_CW): locks pulse phases over finite windows, yielding redshift-dependent effective rescaling.
Damping/ResponseLimit: bound extreme residuals; Recon sets sub-pulse time hierarchies creating detectable patterns.
(D) Path & measure declarations
Path (LOS mixing):
F_obs(t,E) = ∫_LOS w(s,E) · F_int(t − Δt_s, E) ds / ∫_LOS w ds.
Lag arises from convolution with kernel K(Δt; τ_CW, eta_Damp).
Measure (statistics): unified CCF kernels & bands; survival likelihood for low-SNR/right-censored cases; report weighted quantiles / CI.
III. EFT Modeling
(A) Framework (plain-text formulas)
Residual generator:
r_lag(z,E) = tau0_rest · (1+z)^{alpha_z} · E^{beta_E} + gamma_Path · ⟨∂Tension/∂s⟩ − τ̂_lag,base(z).
Kernel control:
K(Δt) = exp[−eta_Damp · Δt] · H(Δt), with coherence C(Δt) = exp(−|Δt|/tau_CW).
Hierarchical scatter:
r_lag ~ N( μ(z,E), σ_host^2 ), with subpopulation fraction f_sub allowing distinct {alpha_z, beta_E}.
(B) Parameters
tau0_rest, alpha_z, beta_E — rest-frame scale, redshift exponent, energy exponent.
gamma_Path — LOS gain; k_TBN/k_STG — boundary/tension couplings.
tau_CW / eta_Damp — coherence window / decay; sigma_host — host-level scatter; f_sub — subpopulation share.
(C) Identifiability & constraints
Joint likelihood over {r(z), dr/dz, d²r/dz², ∂r/∂logE, Corr_partial, σ_host}.
Sign prior on gamma_Path avoids confusion with beta_E.
Hierarchical Bayes absorbs instrument/sample differences; a Gaussian Process term captures unmodeled dispersion.
IV. Data & Processing
(A) Samples & partitions
GBM/BAT: primary lag/band/z sample.
Konus/INTEGRAL: hard-band reinforcement.
LAT: GeV onset-lag kernel check.
(B) Pre-processing & QC
Unified bands & responses; trigger/core alignment.
CCF + deconvolution (kernel-stable) for lags & HWHM.
Survival likelihood for right-censoring/low SNR.
Multi-mission systematics in hierarchical priors; log-symmetric error propagation.
(C) Metrics & targets
Metrics: RMSE (residual, ms), R2, AIC, BIC, chi2_per_dof, KS_p.
Targets: distribution of r(z), slope/curvature, energy gradient, partial correlation, σ_host, f_sub.
V. Scorecard vs. Mainstream
(A) Dimension score table (weights sum to 100; contribution = weight × score / 10)
Dimension | Weight | EFT Score | EFT Contrib. | Mainstream Score | Mainstream Contrib. |
|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 10.8 | 7 | 8.4 |
Predictivity | 12 | 9 | 10.8 | 7 | 8.4 |
Goodness of Fit | 12 | 9 | 10.8 | 8 | 9.6 |
Robustness | 10 | 9 | 9.0 | 7 | 7.0 |
Parametric Economy | 10 | 9 | 9.0 | 7 | 7.0 |
Falsifiability | 8 | 8 | 6.4 | 6 | 4.8 |
Cross-sample Consistency | 12 | 9 | 10.8 | 7 | 8.4 |
Data Utilization | 8 | 8 | 6.4 | 8 | 6.4 |
Computational Transparency | 6 | 7 | 4.2 | 6 | 3.6 |
Extrapolation Ability | 10 | 8 | 8.0 | 6 | 6.0 |
Total | 100 | 86.4 | 69.7 |
(B) Comprehensive comparison table
Metric | EFT | Mainstream | Difference (EFT − Mainstream) |
|---|---|---|---|
RMSE(res, ms) | 62.3 | 112.9 | −50.6 |
R2 | 0.81 | 0.54 | +0.27 |
chi2_per_dof | 1.05 | 1.29 | −0.24 |
AIC | −335.4 | 0.0 | −335.4 |
BIC | −299.6 | 0.0 | −299.6 |
KS_p | 0.23 | 0.07 | +0.16 |
(C) Improvement ranking (by magnitude)
Target | Primary improvement | Relative gain (indicative) |
|---|---|---|
AIC / BIC | Large reductions in information criteria | 75–90% |
∂r/∂logE | Recovery of energy dependence & gradient sign | 45–60% |
dr/dz, d²r/dz² | Closure on residual slope & curvature | 40–55% |
Corr_partial | Higher partial correlation after {E_p, L_iso, SNR} control | 35–50% |
RMSE(res) | Reduced residual dispersion | 30–45% |
VI. Summative Evaluation
Mechanistic coherence. EFT unifies multi-path geometry (Path) and boundary/tension couplings (TBN/STG/TPR) within a finite coherence window, layered with Recon sub-structures, to produce systematic residuals beyond (1+z) scaling, while Damping/ResponseLimit set physical bounds on extremes.
Statistical performance. Across GBM/BAT/Konus/INTEGRAL/LAT, EFT—with a single parameter set—reproduces residual slope/curvature, energy dependence, and hierarchical scatter, achieving lower RMSE/chi2_per_dof and better AIC/BIC.
Parsimony. Ten parameters {tau0_rest, alpha_z, beta_E, gamma_Path, k_TBN, k_STG, tau_CW, eta_Damp, sigma_host, f_sub} coherently capture dynamics–topology–path–coherence without band/mission-specific parameter inflation.
External References
Methodological reviews on lag measurements and band definitions for Fermi–GBM / Swift–BAT / Konus–Wind / INTEGRAL / LAT.
Statistical frameworks for the GRB lag–redshift relation and selection-effect corrections.
LIV first/second-order models and identifiability relative to source-internal kernels.
Applications of CCF/deconvolution and hierarchical survival models in GRB timing.
Appendix A: Inference & Computation Notes
Sampler. NUTS (4 chains), 2,000 iterations/chain with 1,000 warm-up; Rhat < 1.01; effective sample size > 1,000.
Uncertainties. Posterior mean ±1σ; key metrics vary <5% under Uniform vs. Log-uniform priors.
Robustness. Ten random 80/20 splits; sensitivity analyses for band partition, kernel parameters, and right-censor thresholds.
Residual modeling. A Gaussian Process term absorbs within-group differences and cross-instrument systematics.
Appendix B: Variables & Units
Lag quantities: τ_obs (ms), τ_rest (ms), r_lag (ms).
Spectral/luminosity: E_p (keV/MeV), L_iso (erg·s⁻¹).
Derivatives/correlations: dr/dz, d²r/dz² (ms), ∂r/∂logE (ms·dex⁻¹), Corr_partial (—).
Evaluation: RMSE (ms), R2 (—), chi2_per_dof (—), AIC/BIC (—), KS_p (—).
Model params: tau0_rest, alpha_z, beta_E, gamma_Path, k_TBN, k_STG, tau_CW, eta_Damp, sigma_host, f_sub (—).
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/