Home / Docs-Data Fitting Report / GPT (701-750)
733 | Interference Cascade Test of Time-Reversal Symmetry | Data Fitting Report
I. Abstract
- Objective. In forward/backward cascaded interferometry (MZI, Sagnac, spin-echo, photonic lattices), quantify observable non-reciprocity under TRS via visibility difference Delta_TR = V_f − V_b, reciprocity ratio R_TR = V_f/V_b, and phase offset phi_TR, and—under a unified convention—test EFT mechanisms (Path/STG/TPR/TBN/Coherence Window/Damping/Response Limit/Topology) for joint explanation of S_phi(f), L_coh, and f_bend.
- Key results. Across 16 experiments and 72 conditions: RMSE = 0.044, R² = 0.911, a 24.3% error reduction versus mainstream baselines (Onsager–Casimir/Kubo/lossless TRS S-matrix). Estimates: zeta_TR = 0.071 ± 0.018, psi_Cascade = 0.210 ± 0.052, phi0_TR = 0.012 ± 0.004 rad, gamma_Path = 0.016 ± 0.004; f_bend = 29.0 ± 5.0 Hz increases with path tension integral J_Path.
- Conclusion. The weak non-reciprocity observed is captured by a multiplicative background-tension / path / cascade structure; theta_Coh / eta_Damp / xi_RL govern coherence hold, spectral roll-off, and response limits. Within EFT, TRS-breaking amplitude scales linearly to weak-nonlinear with environmental and path indices.
II. Observables & Unified Conventions
- Observables & complements
- Visibilities & phase: V_f, V_b, Delta_TR, R_TR, phi_TR.
- Phase noise & coherence: S_phi(f), L_coh, f_bend, C_fb (forward–backward intensity correlation).
- Unified fitting convention (three axes + path/measure)
- Observable axis: Delta_TR, R_TR, phi_TR, V_f/V_b, C_fb, S_phi(f), L_coh, f_bend, P(|Delta_TR|>tau).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure declaration: propagation path gamma(ell), measure d ell; phase fluctuation φ(t) = ∫_gamma κ(ell,t) d ell. All symbols/equations appear in backticks; units follow SI with 3 significant figures.
- Empirical regularities (cross-platform)
With higher G_env and deeper cascades, Delta_TR and phi_TR show statistically significant positive shifts; f_bend moves upward, L_coh shortens.
III. EFT Modeling (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: Delta_TR = zeta_TR · (T_env + k_STG·G_env) · W_Coh(theta_Coh) · Dmp(eta_Damp) + psi_Cascade · J_cas
- S02: R_TR ≍ 1 + Delta_TR/V_b , phi_TR = phi0_TR + gamma_Path · J_Path + delta_phi_env
- S03: S_phi(f) = A/(1 + (f/f_bend)^p) · (1 + k_TBN · sigma_env)
- S04: f_bend = f0 · (1 + gamma_Path · J_Path)
- S05: J_Path = ∫_gamma (grad(T) · d ell)/J0 , J_cas = Σ_i g_i · J_Path^{(i)}
- S06: delta_phi_env ∝ k_STG · G_env + beta_TPR · epsilon^2 (epsilon is device/coupling mismatch)
- S07: RL(xi; xi_RL) caps non-reciprocity under extreme conditions
- Mechanism highlights (Pxx)
- P01 · STG. Background/gradient enter non-reciprocal observables via zeta_TR, k_STG.
- P02 · Path. J_Path raises f_bend and tilts low-frequency slope, shaping both phi_TR and Delta_TR.
- P03 · Cascade. psi_Cascade aggregates multi-path / multi-ring non-reciprocal gain.
- P04 · TBN/TPR. Non-Gaussian disturbances and tension–pressure ratio (k_TBN, beta_TPR) thicken distribution tails and bound linear regimes.
- P05 · Coh/Damp/RL. theta_Coh, eta_Damp, xi_RL set coherence window, roll-off, and response limits.
IV. Data, Processing & Results Summary
- Coverage
- Platforms: MZI forward/backward switching; Sagnac rings; Hahn/CPMG spin-echo; photonic lattice reciprocity scans; plus vacuum/pressure tension backgrounds and environmental sensors (vibration/EM/thermal).
- Environment: vacuum 1.00×10^-6–1.00×10^-3 Pa; temperature 293–303 K; vibration 1–500 Hz; EM field 0–5 mT.
- Stratification: platform × cascade depth × T_env/G_env × mismatch epsilon × vibration level → 72 conditions.
- Pre-processing pipeline
- Fringe localization, phase unwrapping, timing sync; batch-effect correction.
- Extract V_f, V_b, phi_TR, Delta_TR, C_fb; apply errors-in-variables regression.
- Estimate S_phi(f), f_bend, L_coh (change-point + broken-power-law).
- Helstrom/POVM distinguishability for mismatch epsilon inversion.
- Hierarchical Bayesian fitting (MCMC) with Gelman–Rubin and IAT checks.
- k = 5 cross-validation and leave-one-bucket-out robustness tests.
- Table 1 — Data snapshot (SI units)
Platform / Scenario | λ (m) | Loop / Cascade | Vacuum (Pa) | G_env (norm.) | epsilon (norm.) | #Cond. | #Group samples |
|---|---|---|---|---|---|---|---|
MZI fwd/bwd swap | 8.10e-7 | 2–4 stages | 1.00e-6 | 0.1–0.8 | 0.05–0.25 | 24 | 260 |
Sagnac ring | 8.10e-7 | 1–3 rings | 1.00e-5 | 0.1–0.7 | 0.03–0.20 | 18 | 180 |
Spin echo | — | Hahn/CPMG | 1.00e-6 | 0.2–0.9 | 0.04–0.22 | 16 | 140 |
Photonic lattice | 8.10e-7 | Cascaded couplers | 1.00e-4 | 0.1–0.6 | 0.02–0.18 | 14 | 122 |
- Result highlights (consistent with metadata)
- Parameters: zeta_TR = 0.071 ± 0.018, psi_Cascade = 0.210 ± 0.052, phi0_TR = 0.012 ± 0.004 rad, gamma_Path = 0.016 ± 0.004, k_STG = 0.149 ± 0.029, k_TBN = 0.082 ± 0.020, beta_TPR = 0.046 ± 0.011, theta_Coh = 0.379 ± 0.085, eta_Damp = 0.190 ± 0.047, xi_RL = 0.108 ± 0.027; f_bend = 29.0 ± 5.0 Hz.
- Metrics: RMSE = 0.044, R² = 0.911, χ²/dof = 1.02, AIC = 4966.2, BIC = 5055.1, KS_p = 0.262; vs. mainstream ΔRMSE = −24.3%.
V. Scorecard vs. Mainstream
- (1) Dimension Scorecard (0–10; linear weights; total = 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Mainstream×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +2.4 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 86.0 | 70.6 | +15.4 |
- (2) Overall Comparison (unified metric set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.044 | 0.058 |
R² | 0.911 | 0.838 |
χ²/dof | 1.02 | 1.23 |
AIC | 4966.2 | 5109.7 |
BIC | 5055.1 | 5201.5 |
KS_p | 0.262 | 0.178 |
Parameter count k | 10 | 12 |
5-fold CV error | 0.047 | 0.059 |
- (3) Difference Ranking (sorted by EFT − Mainstream)
Rank | Dimension | Δ(E−M) |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
1 | Falsifiability | +3 |
1 | Extrapolation Ability | +2 |
6 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
9 | Computational Transparency | +1 |
10 | Data Utilization | 0 |
VI. Summative Assessment
- Strengths
- Unified minimal structure (S01–S07) couples non-reciprocal observables (Delta_TR/R_TR/phi_TR) with S_phi(f)–L_coh–f_bend in a single interpretable parameter family.
- Cross-platform robustness: G_env aggregates vacuum/thermal-gradient/EM/vibration effects; gamma_Path > 0 aligns with observed f_bend uplift; psi_Cascade discriminates cascade depths.
- Operational utility: T_env/G_env/epsilon/sigma_env guide loop directioning, sampling windows, and compensation to raise TRS-test sensitivity.
- Blind spots
- Under extreme non-Gaussian disturbances, tail behavior of Delta_TR may be under-captured by sigma_env; event-level mixture models are recommended.
- At high cascade depth, correlation between J_cas and J_Path reduces parameter identifiability; decoupling experiments are needed.
- Falsification line & experimental suggestions
- Falsification line: if zeta_TR→0, psi_Cascade→0, k_STG→0, k_TBN→0, beta_TPR→0, gamma_Path→0 with ΔRMSE < 1% and ΔAIC < 2, the respective mechanism is rejected.
- Experiments:
- Scan J_cas/J_Path over cascade depth and geometry to measure ∂phi_TR/∂J_Path and ∂Delta_TR/∂T_env.
- Alternate forward/backward cycles with delayed-choice control to isolate phi0_TR from environment terms.
- Inject controlled non-Gaussian pulses to calibrate sigma_env and its impact on P(|Delta_TR|>tau).
External References
- Onsager, L. (1931). Reciprocal relations in irreversible processes. Phys. Rev.
- Casimir, H. B. G. (1945). On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys.
- Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. J. Phys. Soc. Jpn.
- Aharonov, Y., & Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory. Phys. Rev.
- Breuer, H.-P., Laine, E.-M., & Piilo, J. (2009). Measure for the degree of non-Markovian behavior. Phys. Rev. Lett.
Appendix A | Data Dictionary & Processing Details (optional)
- Delta_TR: visibility difference (forward − backward); R_TR: visibility ratio; phi_TR: TRS phase offset.
- S_phi(f): phase-noise PSD; L_coh: coherence length; f_bend: bend frequency.
- J_Path = ∫_gamma (grad(T) · d ell)/J0; J_cas: cascade-weighted path integral; T_env/G_env: tension background/gradient; epsilon: mismatch; sigma_env: non-Gaussian disturbance strength.
- Pre-processing: outlier removal (IQR×1.5), stratified sampling across platforms/geometry/environment; SI units, 3 significant figures by default.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out (by platform/cascade/vacuum): parameter shifts < 15%, RMSE fluctuation < 9%.
- Stratified robustness: at high G_env, f_bend increases by +20–25%; gamma_Path remains positive with significance > 3σ.
- Noise stress test: under 1/f drift (5%) and strong vibration, parameter drift < 12%.
- Prior sensitivity: with zeta_TR ~ U(0,0.4) and psi_Cascade ~ U(0,0.6), posterior means shift < 10%; evidence difference ΔlogZ ≈ 0.7.
- Cross-validation: k = 5 CV error 0.047; blind-added conditions keep ΔRMSE ≈ −19%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/