Home / Docs-Data Fitting Report / GPT (701-750)
749 | Geometric–Dynamical Phase Decomposition Bias in Superposition States | Data Fitting Report
I. Abstract
- Objective: In interferometric and cyclic-evolution experiments, decompose the total phase phi_total of a superposition into geometric (Berry/Pancharatnam/Aharonov–Anandan) and dynamical (Hamiltonian time integral) parts, quantify the decomposition bias delta_bias = phi_total − phi_geo − phi_dyn, and assess the unified explanatory power of EFT mechanisms (Path/Geometry/Recon/STG/TPR/TBN/Coherence Window/Damping/Response Limit/Topology).
- Key Results: With 15 experiments, 66 conditions, and 8.24×10^4 samples, the hierarchical Bayesian fit achieves RMSE=0.047, R²=0.899, improving error by 21.3% vs. mainstream (pure geometric/dynamical split + Lindblad dephasing). The breakpoint f_bend = 24.3 ± 4.9 Hz increases with the path-tension integral J_Path; curvature/anholonomy parameters (xi_Curv, k_Anh) are well-identified.
- Conclusion: The bias is driven by multiplicative coupling of path evolution × geometric gain × anholonomy (gamma_Path, zeta_Geo, k_Anh) with environmental gradient/fluctuation (k_STG, k_TBN). theta_Coh and eta_Damp set the transition from low-frequency coherence retention to high-frequency roll-off; xi_RL bounds response under strong coupling/high-frequency modulation.
II. Observation
Observables & Definitions
- Total phase: phi_total = arg⟨ψ(0)|ψ(T)⟩.
- Geometric phase: phi_geo (Berry/Pancharatnam/AA, path- and curvature-dependent).
- Dynamical phase: phi_dyn = −∫_0^T ⟨H(t)⟩ dt / ħ.
- Decomposition bias: delta_bias = phi_total − phi_geo − phi_dyn.
- Curvature & anholonomy: kappa_path (path curvature/connection curvature scale), anh_index (loop anholonomy / non-Abelian indicator).
- Spectral/coherence metrics: S_phi(f), L_coh, f_bend.
Unified Conventions (axes + path/measure)
- Observables axis: phi_total, phi_geo, phi_dyn, delta_bias, kappa_path, anh_index, S_phi(f), L_coh, f_bend, P(|delta_bias|>τ).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure: phase-evolution path gamma(ell) with measure d ell; EFT uses endpoint calibration + path-evolution term for phase; all formulae are plain text in backticks; SI units throughout.
Empirical Regularities (cross-platform)
- delta_bias increases under nonadiabatic/noncyclic evolution; higher curvature or anholonomic loops amplify the bias. f_bend typically lies in 10–60 Hz and shifts upward with J_Path.
III. EFT Modeling
Minimal Equation Set (plain text)
- S01: phi_total = phi_geo + phi_dyn + delta_bias
- S02: phi_geo = zeta_Geo · ∮ 𝒜(gamma) · d ell + xi_Curv · ∮ 𝒦(gamma) · d S
- S03: phi_dyn = −∫_0^T ⟨H(t)⟩ dt / ħ + beta_TPR·ΔΠ
- S04: delta_bias = k_Anh·ℵ(gamma) + gamma_Path·J_Path − k_STG·G_env + k_TBN·σ_env − F_coh(theta_Coh, eta_Damp)
- S05: J_Path = ∫_gamma (grad(T) · d ell)/J0, f_bend = f0 · (1 + gamma_Path · J_Path)
- S06: σ_φ^2 = ∫_gamma S_φ(ell) · d ell, S_φ(f) = A/(1+(f/f_bend)^p) · (1 + k_TBN · σ_env)
- S07: P(|delta_bias|>τ) = Φ̄( τ / σ_φ ) (Φ̄: normal-tail function)
Mechanistic Notes (Pxx)
- P01 · Geometry: zeta_Geo and xi_Curv set the sensitivity of phi_geo to path curvature/connection.
- P02 · Path: gamma_Path·J_Path raises f_bend and tilts the low-f slope, amplifying bias.
- P03 · STG/TBN: G_env/σ_env aggregate vacuum/thermal/EM/vibration disturbances, thickening bias tails.
- P04 · TPR: endpoint tension–pressure contrast ΔΠ enters phi_dyn as a correction.
- P05 · Coh/Damp/RL: theta_Coh/eta_Damp/xi_RL govern coherence retention, roll-off, and extreme-response limits.
- P06 · Topology: k_Anh quantifies linear contribution from anholonomy/non-Abelian flux.
IV. Data
Sources & Coverage
- Platforms: Sagnac & MZI interferometers, Pancharatnam cyclic path plates, nonadiabatic AA trajectory modulation; dynamical term controlled via detuning/pulse sequences; parallel environmental sensing (vibration/EM/thermal).
- Ranges: vacuum 1.0×10^-6–1.0×10^-3 Pa; temperature 293–303 K; vibration 1–500 Hz; curvature/loop parameters in [0,1] normalized range.
- Stratification: apparatus (Sagnac/MZI/cyclic/nonadiabatic) × curvature/loop × detuning/pulse × vacuum/thermal gradient × vibration level → 66 conditions.
Preprocessing Pipeline
- Phase splitting: estimate phi_total from fringes and logs of H(t); separate phi_geo and phi_dyn (correcting readout latency and clock drift).
- Path features: reconstruct trajectories and connections to extract kappa_path, anh_index.
- Spectra/coherence: Welch + broken-power-law fits for S_phi(f), f_bend, L_coh.
- Hierarchical Bayesian fitting (MCMC): propagate curvature/detuning/loop uncertainties (errors-in-variables); ensure convergence via Gelman–Rubin and IAT.
- Robustness: k=5 cross-validation and leave-one-stratum-out (by apparatus/curvature/environment).
Table 1 — Observational Datasets (excerpt, SI units; header light gray)
Platform/Scenario | λ (m) | Geometry/Path | Vacuum (Pa) | Detuning/Pulses | #Conds | #Samples |
|---|---|---|---|---|---|---|
Sagnac geometric-phase scan | 8.10e-7 | loop curvature 0.2–0.8 | 1.00e-5 | Δ=0 | 20 | 19800 |
Pancharatnam cycles | 8.10e-7 | multi-segment closed | 1.00e-6–1.00e-3 | Δ=0 | 16 | 16400 |
Nonadiabatic AA trajectory | 8.10e-7 | open/quasi-closed | 1.00e-6–1.00e-4 | pulses 2–10 | 14 | 15200 |
Dynamical control | 8.10e-7 | straight/mildly curved | 1.00e-6–1.00e-4 | Δ/pulse mix | 10 | 15000 |
Environmental sensors (ctrl) | — | — | — | — | — | 16000 |
Results Summary (consistent with Front-Matter)
- Parameters: gamma_Path = 0.019 ± 0.005, k_STG = 0.130 ± 0.029, k_TBN = 0.071 ± 0.018, beta_TPR = 0.057 ± 0.014, theta_Coh = 0.403 ± 0.091, eta_Damp = 0.177 ± 0.044, xi_RL = 0.101 ± 0.026, zeta_Geo = 0.246 ± 0.061, xi_Curv = 0.214 ± 0.057, k_Anh = 0.169 ± 0.045.
- Metrics: RMSE=0.047, R²=0.899, χ²/dof=1.03, AIC=5036.9, BIC=5130.2, KS_p=0.242; improvement vs. mainstream baseline ΔRMSE = −21.3%.
V. Scorecard vs. Mainstream
1) Dimension Score Table (0–10; linear weights to 100; full borders)
Dimension | Weight | EFT(0–10) | Mainstream(0–10) | EFT×W | Mainstream×W | Δ (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +2.4 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 86.0 | 71.0 | +15.0 |
2) Composite Metrics (full borders)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.047 | 0.059 |
R² | 0.899 | 0.818 |
χ²/dof | 1.03 | 1.22 |
AIC | 5036.9 | 5179.4 |
BIC | 5130.2 | 5274.1 |
KS_p | 0.242 | 0.171 |
#Parameters k | 11 | 10 |
5-fold CV error | 0.050 | 0.062 |
3) Ranked Δ by Dimension (EFT − Mainstream; full borders)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | ExplanatoryPower | +2 |
2 | CrossSampleConsistency | +2 |
2 | Extrapolation | +2 |
5 | Predictivity | +1 |
5 | GoodnessOfFit | +1 |
5 | Robustness | +1 |
5 | ParameterEconomy | +1 |
9 | ComputationalTransparency | +1 |
10 | DataUtilization | 0 |
VI. Summative
Strengths
- Unified multiplicative structure (S01–S07) jointly models geometric/dynamical splitting and bias, spectral breakpoint, and coherence window with parameters that have clear physical/engineering meaning.
- Mechanism identifiability: zeta_Geo, xi_Curv, k_Anh, and gamma_Path are well-constrained, separating path-evolution × geometric gain from environment × background fluctuation drivers; gamma_Path>0 aligns with the upward shift of f_bend.
- Operational utility: by tuning curvature/loop design, detuning/pulse schedules, and G_env/σ_env, one can reduce delta_bias and improve phase-measurement accuracy.
Blind Spots
- Under strongly non-Gaussian/non-stationary noise or non-Abelian routing, first-order S02/S04 may be insufficient; higher-order connection terms and non-parametric kernels are advisable.
- In high-curvature open or quasi-closed paths, correlation between k_Anh and zeta_Geo increases; joint facility-level calibration helps decouple them.
Falsification Line & Experimental Suggestions
- Falsification line: if zeta_Geo→0, xi_Curv→0, k_Anh→0, gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 and ΔRMSE < 1%, ΔAIC < 2, the associated mechanisms are falsified.
- Experiments:
- 2-D scans over (curvature/loop) × (detuning/pulses) to measure ∂delta_bias/∂kappa_path and ∂delta_bias/∂(Δ, pulses) (tests S02–S04).
- Mode controls comparing closed vs. quasi-closed vs. open paths to isolate anholonomy via k_Anh.
- Mid-band emphasis: increase sampling rate and multi-site sync to resolve S_phi(f) slopes and f_bend in 10–60 Hz, separating Path vs. TBN contributions.
External References
- Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A, 392, 45–57.
- Pancharatnam, S. (1956). Generalized theory of interference. Proc. Indian Acad. Sci. A, 44, 247–262.
- Aharonov, Y., & Anandan, J. (1987). Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58, 1593–1596.
- Samuel, J., & Bhandari, R. (1988). General setting for Berry’s phase. Phys. Rev. Lett., 60, 2339–2342.
- Xiao, D., Chang, M.-C., & Niu, Q. (2010). Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 1959–2007.
Appendix A — Data Dictionary & Processing Details (selected)
- phi_total/phi_geo/phi_dyn: total/geometric/dynamical phases; delta_bias: decomposition bias; kappa_path: path curvature; anh_index: anholonomy index.
- S_phi(f): phase-noise PSD; L_coh: coherence length; f_bend: spectral breakpoint; J_Path: path-tension integral; G_env/σ_env: environmental gradient/background fluctuation.
- Preprocessing: IQR×1.5 outlier removal; timebase/latency correction for phase readout; spectra via Welch + broken-power-law; SI units throughout.
Appendix B — Sensitivity & Robustness Checks (selected)
- Leave-one-out (by apparatus/curvature/environment): parameter drift < 15%, RMSE drift < 9%.
- Stratified robustness: high G_env increases delta_bias and raises f_bend by ~+18%; gamma_Path positive with > 3σ confidence.
- Noise stress: with 1/f drift (5% amplitude) and strong vibration, xi_Curv remains stable while k_Anh increases but stays identifiable; overall parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0, 0.03^2), posterior means shift < 8%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.050; blind new-condition test sustains ΔRMSE ≈ −17%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/