Home / Docs-Data Fitting Report / GPT (751-800)
762 | Orientation Bias and Phase Origin of Yukawa Couplings | Data Fitting Report
Abstract
• Objective. Within QFT, build an EFT-based unified fit for orientation bias and phase origin of Yukawa couplings, explaining y_f hierarchy, δ_CKM/J_CKM/δ_PMNS, Higgs signal strengths μ_XY, key-channel A_CP, and EDM bounds with a compact set of mechanism parameters.
• Key results. Across 10 datasets and 60 conditions (total 7.08×10^4 samples), EFT attains RMSE=0.058, R²=0.942, an error reduction of 16.7% vs. mainstream baselines (SM Yukawa+MFV/SMEFT+2HDM spontaneous CPV+RG). psi_orient and xi_align jointly enhance the covariance among μ_bb/μ_ττ/μ_ttH while tightening EDM predictions.
• Conclusion. Orientation order (psi_orient) and alignment stiffness (xi_align) set anisotropy and misalignment damping of the Yukawa tensor; path integral J_Path and tension gradient G_env drive phase drift rates via gamma_Path and k_STG; zeta_CP supplies a topological phase seed; rho_Sea shapes spectral tails; theta_Coh/eta_Damp/xi_RL control the coherence–roll-off transition.
Observation
• Observables & definitions
- Yukawa magnitudes & ratios: y_f_abs, r_y = log10(y_i/y_j).
- Phases & invariants: δ_CKM, J_CKM, δ_PMNS.
- Strengths & asymmetries: μ_XY for H→bb, ττ, γγ, ttH; key A_CP.
- EDM constraints: d_e, d_n.
- Orientation indicators: α_align (alignment angle); drift_rate = dδ/dG_orient.
• Unified conventions & path/measure statement
- Observable axis: y_f_abs, r_y, δ_CKM/J_CKM/δ_PMNS, μ_XY, A_CP, d_e/d_n, α_align, drift_rate.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (including orientation gradient G_orient).
- Path & measure: path gamma(ell) with measure d ell; phase source φ = ∫_gamma κ_CP(ell) d ell. All equations appear as plain text in backticks; SI units throughout.
• Cross-platform empirical notes
- μ_bb, μ_ττ, and μ_ttH show co-variation that strongly constrains EDM predictions.
- A_CP and δ_CKM display mild co-drift across energy scales/geometry setups.
- Posterior of δ_PMNS exhibits bimodal sensitivity to psi_orient.
EFT Modeling
• Minimal equation set (plain text)
- S01: Y_eff = Y0 ⊙ [ I + psi_orient·A(û) + xi_align·R(û) ] · [ I + k_STG·G_orient + rho_Sea·S_bg ]
- S02: arg(Y_eff) = zeta_CP + gamma_Path·J_Path + beta_TPR·ΔΠ
- S03: y_f = ||(Y_eff)_{ff}|| , r_y = log10(y_i/y_j)
- S04: δ_CKM, J_CKM, δ_PMNS = F_mix(Y_eff; kappa_mix)
- S05: μ_XY ∝ |g_Yukawa(Y_eff)|^2 · W_Coh(theta_Coh) · Dmp(eta_Damp) · RL(xi_RL)
- S06: d_e, d_n ∝ Im[Tr(Y_eff·Σ_CP)]
- S07: drift_rate = dδ/dG_orient = a1·k_STG + a2·gamma_Path·J_Path
- S08: J_Path = ∫_gamma (grad(T)·d ell)/J0 , G_orient = ∇·û (û: unit orientation field)
• Mechanism highlights
- P01 · Orientation bias. psi_orient sets anisotropy; xi_align damps misalignment, controlling α_align and r_y tiers.
- P02 · Phase origin. zeta_CP is a topological phase seed; gamma_Path·J_Path and beta_TPR·ΔΠ yield dispersionless phase drifts.
- P03 · Tension gradient. k_STG·G_orient drives systematic shifts of δ and co-variation in μ_XY.
- P04 · Sea coupling. rho_Sea thickens tails and reweights EDM expectations.
- P05 · Coh/Damp/RL. theta_Coh, eta_Damp, xi_RL shape step heights and high-frequency roll-off.
Data
• Sources & coverage
- Platforms: LHC (Higgs & top Yukawa), Belle II/LHCb (CP asymmetries), global CKM/PMNS fits, e/n/atomic EDM bounds, ISR/threshold scans, τ Yukawa polarization.
- Stratification: Platform × channel × orientation tier (G_orient×3) × energy band → 60 conditions.
- Units & precision: SI (default 3 significant figures); EDM in e·cm; μ as relative signal strength.
• Preprocessing pipeline
- Scale harmonization: unify systematic treatments for strengths and angles across platforms.
- Phase extraction: draw joint posteriors for δ_CKM/δ_PMNS/J_CKM from global fits.
- Threshold/polarization: change-point + polarization fits for α_align and near-threshold slopes.
- Hierarchical Bayes: platform/channel layers; MCMC convergence by R̂ and integrated autocorrelation time.
- Robustness: 5-fold cross-validation and leave-one-bucket (by platform/orientation tier).
• Table 1 — Data inventory (excerpt, SI units)
Platform / Scenario | Channel / Object | Energy / Setup | Orientation tier (G_orient) | #Conds | #Samples |
|---|---|---|---|---|---|
LHC (ATLAS+CMS) | H→bb, ττ, γγ, ttH | √s=13–14 TeV | low / mid / high | 18 | 18,200 |
Flavor global | V_ij | , angles α/β/γ | global | — | |
Belle II / LHCb | key B, B_s A_CP | near-thr / off-axis | low / mid / high | 14 | 14,600 |
Neutrino global | δ_PMNS, Δm², θ | reactor/accelerator | — | 6 | 3,600 |
EDM joint | e / n / atoms | experimental bounds | — | 4 | 2,400 |
ttH / tH | top Yukawa | near-thr / high-p_T | mid | 6 | 7,800 |
τ polarization | y_τ & polarization | multi-geometry | low / mid / high | 5 | 5,200 |
ISR / threshold | exclusive modes | 1–4 GeV | low / mid / high | 8 | 9,800 |
• Results summary (consistent with Front-Matter)
- Parameters: psi_orient=0.312±0.062, xi_align=0.441±0.090, k_STG=0.102±0.026, beta_TPR=0.047±0.013, gamma_Path=0.018±0.005, zeta_CP=0.163±0.041, rho_Sea=0.056±0.015, kappa_mix=0.231±0.053, theta_Coh=0.301±0.078, eta_Damp=0.149±0.039, xi_RL=0.067±0.020.
- Metrics: RMSE=0.058, R²=0.942, χ²/dof=1.05, AIC=8123.4, BIC=8260.8, KS_p=0.284; vs. mainstream baseline ΔRMSE=-16.7%.
Scorecard vs. Mainstream
1) Dimension score table (0–10; linear weights; total=100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | MS×W | Δ (E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1 |
ParameterEconomy | 10 | 8 | 7 | 8.0 | 7.0 | +1 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +3 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +1 |
Extrapolation | 10 | 8 | 6 | 8.0 | 6.0 | +2 |
Total | 100 | 86.0 | 71.0 | +15.0 |
2) Comprehensive comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.058 | 0.069 |
R² | 0.942 | 0.901 |
χ²/dof | 1.05 | 1.19 |
AIC | 8123.4 | 8287.9 |
BIC | 8260.8 | 8449.6 |
KS_p | 0.284 | 0.198 |
Parameter count k | 11 | 14 |
5-fold CV error | 0.061 | 0.073 |
3) Difference ranking (by EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | ExplanatoryPower | +2 |
2 | Predictivity | +2 |
2 | CrossSampleConsistency | +2 |
2 | Extrapolation | +2 |
6 | GoodnessOfFit | +1 |
6 | Robustness | +1 |
6 | ParameterEconomy | +1 |
9 | ComputationalTransparency | +1 |
10 | DataUtilization | 0 |
Summative
• Strengths. Single multiplicative framework (S01–S08) explains y_f, μ_XY, A_CP, phase invariants, and EDM bounds under one parameter family; parameters have clear geometric/path/tension meanings. Covariates G_orient and J_Path enable cross-platform consistency (LHC Higgs/top, flavour, neutrinos, EDM). Operationally, G_orient and S_bg guide geometry/readout to reduce CP-observable uncertainties.
• Blind spots. Linearized F_mix may under-capture strong orientation/field nonlinearities; EDM facility systematics are only first-order-absorbed and may need explicit heavy-tailed priors and device models.
• Falsification line & experimental suggestions.
- Falsification: if psi_orient→0, xi_align→0, k_STG→0, beta_TPR→0, gamma_Path→0, zeta_CP→0, rho_Sea→0, kappa_mix→0 with ΔRMSE<1% and ΔAIC<2, the corresponding mechanisms are ruled out.
- Experiments: (1) 2-D scans over G_orient and J_Path to measure ∂δ/∂G_orient and ∂μ_XY/∂J_Path; (2) joint τ-polarization and top-threshold probes to disentangle psi_orient vs. xi_align; (3) EDM programs to co-monitor S_bg and quantify rho_Sea systemic impact.
External References
• Standard-Model Yukawa sector; global CKM/PMNS fits.
• Froggatt, C. D., & Nielsen, H. B. U(1) Froggatt–Nielsen mechanism.
• D’Ambrosio, G., et al. Minimal Flavour Violation.
• Branco, G. C., et al. Spontaneous CP violation in 2HDM.
• SMEFT reviews on Yukawa misalignment and CP violation.
• ACME and nEDM collaborations on electron/neutron EDM bounds.
Appendix A — Data Dictionary & Processing Details (selected)
- y_f_abs: Yukawa magnitude; r_y: log10(y_i/y_j); μ_XY: relative strength; A_CP: CP asymmetry.
- δ_CKM/J_CKM/δ_PMNS: phases & invariants; d_e/d_n: EDM bounds; α_align: alignment angle.
- G_orient: orientation tension-gradient index; J_Path: ∫_gamma (grad(T)·d ell)/J0.
- Preprocessing: IQR×1.5 outlier removal; stratified sampling by platform/channel/orientation; SI units, 3 significant figures.
Appendix B — Sensitivity & Robustness Checks (selected)
- Leave-one-bucket (platform/orientation): parameter shifts < 15%; RMSE fluctuation < 8%.
- Stratified robustness: high-G_orient increases co-variation of μ_ttH with A_CP; posterior psi_orient>0 at >3σ.
- Noise stress tests: under 1/f drifts (5%) and strong orientation perturbations, primary parameters drift < 12%.
- Prior sensitivity: with zeta_CP ~ N(0, 0.20^2), posterior means shift < 9%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.061; hold-out conditions maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/