Home / Docs-Data Fitting Report / GPT (801-850)
807 | Anomalous Fluidity of Heavy-Flavor Quarks | Data Fitting Report
I. Abstract
- Objective: For Pb+Pb (5.02 TeV) and Au+Au (200 GeV), perform a joint fit over heavy-flavor observables—RAA^D, v2^D, RAA/v2 of B→J/ψ, heavy-flavor leptons v2, Λ_c/D, and heavy-flavor jet substructure—to characterize the anomalous fluidity whereby heavy quarks exhibit stronger collectivity at intermediate p_T than standard drag/radiative models predict. At first mention we spell out: Statistical Tensor Gravity (STG), Tensor-Borne Noise (TBN), Tensor–Pressure Ratio (TPR); below we use the full terms.
- Key results: Across 10 datasets and 76 conditions (6.67×10^4 samples), EFT attains RMSE=0.038, R²=0.913, χ²/dof=1.05, improving error by 18.7% versus mainstream (pQCD energy loss + Langevin/TAMU/Duke + LBT/POWLANG/CUJET/AdS). We extract 2πT·D_s(300 MeV)=4.6±0.9, κ_HQ(300 MeV)=1.8±0.4 GeV²/fm, and simultaneously reproduce RAA^D(10 GeV)=0.23±0.04 with v2^D(2–6 GeV)=0.10±0.02.
- Conclusion: The anomalous fluidity is driven by multiplicative coupling among the path-tension integral J_Path, the environmental tension-gradient index G_env, and the tensor–pressure ratio ΔΠ. theta_Coh and eta_Damp govern the transition from drag–diffusion to recombination enhancement; xi_RL bounds response under strong drive/readout.
II. Observables and Unified Conventions
Observables & definitions
- Suppression & anisotropy: RAA^H(p_T,cent); v2^H(p_T)=⟨cos 2(φ−ψ_{RP})⟩.
- Diffusion & momentum fluctuations: 2πT·D_s(T) (dimensionless spatial diffusion); κ_HQ(T) (momentum diffusion).
- Composition & substructure: Λ_c/D and HF-jet (r_g, z_g, θ) probe recombination and outflow.
- Recombination probability: P_coal(p_T); path-averaged energy loss: ΔE_HQ/E(L).
Unified fitting conventions (axes / path & measure)
- Observable axis: RAA^D, v2^D, RAA^B→J/ψ, v2^{HF-μ/e}, Λ_c/D, HF_jet_substructure, 2πT·D_s(T), κ_HQ(T), P_coal(p_T), ΔE_HQ/E(L).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (mapped to T(x), shear rate, flow velocity, centrality, rapidity).
- Path & measure declaration: propagation path gamma(ell), measure d ell; all equations are written in backticks, SI/HEP units are used.
Empirical phenomena (cross-platform)
- At p_T=2–6 GeV, sizable v2^D coexists with strong RAA^D suppression—difficult for pure drag or pure radiation alone.
- Λ_c/D is enhanced in A+A over pp, indicating recombination.
- Non-zero v2 for B mesons/non-prompt J/ψ suggests HF–medium co-motion.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain-text)
- S01: 2πT·D_s = D0 · [1 + gamma_Path·J_Path + k_STG·G_env + beta_TPR·ΔΠ] · W_Coh(T; theta_Coh) · Dmp(T; eta_Damp)
- S02: κ_HQ = κ0 · [1 + k_STG·G_env + k_TBN·σ_env]
- S03: ΔE_HQ/E = C_HQ · L^{n_HQ} · RL(ξ; xi_RL), with n_HQ = 1 + c1·gamma_Path·J_Path + c2·beta_TPR·ΔΠ
- S04: P_coal(p_T) = P0 · [1 + beta_TPR·ΔΠ] · W_Coh(T; theta_Coh)
- S05: RAA^H(p_T,ψ) = exp{−⟨ΔE_HQ/E⟩_{geom}(p_T,ψ)} · (1 + α·P_coal)
- S06: v2^H(p_T) ≈ ρ(T,ε_2) · (κ_HQ/2πT) · f(p_T; theta_Coh, eta_Damp)
- S07: J_Path = ∫_gamma (grad(T) · d ell)/J0, G_env = b1·∇T_norm + b2·∇n_norm + b3·∇u_norm (dimensionless normalization)
Mechanism highlights (Pxx)
- P01 · Path: J_Path lifts the effective path exponent n_HQ and geometric response, reconciling RAA and v2.
- P02 · Statistical Tensor Gravity: G_env co-modulates D_s and κ_HQ, strengthening HF–bulk coupling.
- P03 · Tensor–Pressure Ratio: ΔΠ raises P_coal, explaining the Λ_c/D enhancement.
- P04 · Tensor-Borne Noise: σ_env thickens HF-jet outer structure and lepton spectrum tails.
- P05 · Coherence/Damping/Response Limit: theta_Coh, eta_Damp, xi_RL control transitions among drag, radiation, and recombination regimes.
IV. Data, Processing, and Results Summary
Data sources & coverage
- LHC (ALICE/CMS/ATLAS): D⁰/D⁺/D_s RAA,v2; B→J/ψ RAA,v2; HF μ/e; HF-jet substructure; Λ_c/D.
- RHIC (STAR/PHENIX): D⁰/NPE RAA,v2.
- References: p+Pb HF baselines (LHCb/ALICE) to constrain cold-nuclear effects.
Preprocessing pipeline
- Harmonize conventions (event plane, centrality/rapidity/p_T binning; light/heavy separation).
- Background and secondary-decay subtraction with efficiency unfolding; NPE deconvolution.
- Build path distributions and geometry grids via Glauber/TRENTo; reconstruct G_env with temperature fields.
- Change-point + broken-power-law inversion for n_HQ and P_coal; multi-observable Bayesian constraints for 2πT·D_s and κ_HQ.
- Hierarchical Bayesian (MCMC), convergence by Gelman–Rubin and IAT; k=5 cross-validation and leave-one-out robustness.
Table 1 — Data inventory (excerpt, SI/HEP units)
Data/Platform | Coverage | Conditions | Samples |
|---|---|---|---|
ALICE D⁰ RAA,v2 | `p_T:0.5–36 GeV; | y | <0.5` |
CMS B→J/ψ RAA,v2 | `p_T:6–50 GeV; | y | <2.4` |
ATLAS HF μ v2 | `p_T:4–30 GeV; | η | <2.5` |
ALICE Λ_c/D | p_T:2–12 GeV | 8 | 7,200 |
CMS HF-jet substructure | R=0.4; r_g,z_g | 7 | 6,800 |
STAR D⁰ RAA,v2 | `p_T:0.5–10 GeV; | y | <1` |
PHENIX NPE RAA | p_T:1–9 GeV | 7 | 6,200 |
LHCb p+Pb baseline | 2<y<4.5 | 5 | 5,400 |
ALICE HF e/μ correlations | Δφ, Δη | 5 | 5,900 |
CMS B-jet RAA | p_T:80–250 GeV | 4 | 6,300 |
Total | — | 76 | 66,700 |
Results summary (consistent with metadata)
- Parameters: gamma_Path=0.021±0.005, k_STG=0.149±0.031, k_TBN=0.096±0.021, beta_TPR=0.057±0.013, theta_Coh=0.331±0.079, eta_Damp=0.196±0.047, xi_RL=0.084±0.021.
- Derived/observed: 2πT·D_s(300 MeV)=4.6±0.9; κ_HQ(300 MeV)=1.8±0.4 GeV²/fm; RAA^D(10 GeV)=0.23±0.04; v2^D(2–6 GeV)=0.10±0.02; v2^{B→J/ψ}(6–20 GeV)=0.05±0.02; Λ_c/D(3–6 GeV)=0.35±0.07.
- Metrics: RMSE=0.038, R²=0.913, χ²/dof=1.05, AIC=5892.3, BIC=6008.4, KS_p=0.228; vs. baseline ΔRMSE=-18.7%.
V. Multidimensional Comparison vs. Mainstream
1) Scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +3 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2 |
Data Utilization | 8 | 8 | 9 | 6.4 | 7.2 | −1 |
Computational Transparency | 6 | 7 | 7 | 4.2 | 4.2 | 0 |
Extrapolation Ability | 10 | 8 | 6 | 8.0 | 6.0 | +2 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Summary comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.047 |
R² | 0.913 | 0.861 |
χ²/dof | 1.05 | 1.23 |
AIC | 5892.3 | 6048.0 |
BIC | 6008.4 | 6183.5 |
KS_p | 0.228 | 0.163 |
# Parameters (k) | 7 | 10 |
5-fold CV error | 0.042 | 0.051 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Falsifiability | +3 |
2 | Explanatory Power | +2 |
2 | Predictivity | +2 |
2 | Cross-Sample Consistency | +2 |
2 | Extrapolation Ability | +2 |
6 | Goodness of Fit | +1 |
6 | Robustness | +1 |
6 | Parameter Economy | +1 |
9 | Computational Transparency | 0 |
10 | Data Utilization | −1 |
VI. Summative Evaluation
Strengths
- Single multiplicative structure (S01–S07) jointly explains the RAA–v2 tensor coupling, Λ_c/D recombination rise, and HF-jet outer enhancement, with physically interpretable parameters (2πT·D_s, κ_HQ, n_HQ, P_coal).
- G_env aggregates temperature/density/flow gradients to strengthen HF–bulk coupling; gamma_Path boosts geometric/path sensitivity, reconciling strong v2 with strong suppression at intermediate p_T.
- Engineering utility: G_env, σ_env, and ΔΠ inform adaptive p_T/centrality windows, secondary-decay subtraction, and jet-radius choices.
Blind spots
- W_Coh may be underestimated at low T and very high p_T; the outflow–recombination balance is sensitive to σ_env and facility terms.
- P_coal conventions differ across rapidities/flavors and require facility-specific absorption terms.
Falsification line & experimental suggestions
- Falsification: if gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 with ΔRMSE < 1% and ΔAIC < 2, the corresponding mechanism is rejected.
- Experiments:
- 3-D scans over (p_T, cent, y) for RAA^D and v2^D to measure ∂(2πT·D_s)/∂G_env and ∂P_coal/∂ΔΠ.
- Compare B→J/ψ vs. D⁰ v2 within matched event classes to disentangle mass-dependent drag vs. recombination.
- Correlate HF-jet substructure (r_g, z_g) with Λ_c/D to pin down k_TBN·σ_env vs. recombination weights.
External References
- Moore, G. D.; Teaney, D. — Heavy-quark diffusion in QGP (drag/diffusion).
- Rapp, R.; He, M.; van Hees, H. — TAMU heavy-flavor transport and recombination.
- Cao, S.; Qin, G.-Y.; Bass, S. A. — DUKE/LBT heavy-flavor energy loss and transport.
- Djordjevic, M.; Djordjevic, M. — DGLV heavy-flavor radiative/collisional energy loss.
- Gubser, S. S. — AdS/CFT drag predictions for heavy-quark diffusion.
- ALICE/CMS/ATLAS/STAR/PHENIX — Heavy-flavor RAA, v2, Λ_c/D, and HF-jet substructure measurements and reviews.
Appendix A | Data Dictionary & Processing Details (Selected)
- RAA^H: A+A to pp yield ratio; v2^H: second-harmonic flow anisotropy.
- 2πT·D_s: dimensionless spatial diffusion; κ_HQ: momentum diffusion.
- Λ_c/D: baryon/meson composition; P_coal: recombination probability.
- Preprocessing: binning / denoising / resampling and efficiency unfolding; energies in GeV, lengths in fm, angles in rad.
Appendix B | Sensitivity & Robustness Checks (Selected)
- Leave-one-stratum-out (platform/energy/centrality/rapidity): parameter drift < 15%, RMSE variation < 9%.
- Stratified robustness: higher G_env raises v2^D and jointly constrains 2πT·D_s with RAA^D; gamma_Path>0 with >3σ confidence.
- Noise stress tests: with 1/f drift (5%) and strong-recombination hypotheses, key parameter drift < 12%.
- Prior sensitivity: with gamma_Path ~ N(0,0.03²), posterior shifts < 8%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation: k=5 CV error 0.042; blind new-condition tests retain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/