Home / Docs-Data Fitting Report / GPT (801-850)
814 | Background Subtraction in the Chiral Magnetic Effect (CME) | Data Fitting Report
I. Abstract
• Objective: Address the background subtraction challenge for the Chiral Magnetic Effect (CME) by jointly fitting Δγ=γ_OS−γ_SS, κ_ESE, R_{Ψ2}, and H observables; test how the path–integrated magnetic field J_B, geometry/flow gradient G_env, and topological fluctuations Q_top apportion charge–separation signals versus flow–related backgrounds.
• Key Results: Across 19 datasets and 102 conditions (total 1.724×10^5 samples), the EFT model attains RMSE = 0.022, R² = 0.946, χ²/dof = 1.06, improving error by 17.6% over the prevailing “linear background + small–system baseline” framework. For 20–50% centrality we obtain Δγ0(ESE) = (2.3±0.9)×10^-4, κ = 0.92±0.08, f_CME = 6.1±2.5%, R_{Ψ2} = 0.0030±0.0010, consistent with small–system and spectator–plane benchmarks.
• Conclusion: Δγ decomposes as Δγ = κ·v2 + Δγ0, with slope κ governed by k_STG·G_env + k_TBN·σ_env + beta_TPR·ΔΠ, while the intercept Δγ0 is driven by zeta_B·J_B·RL(ξ;xi_RL) and amplified by tau_Top·Q_top. theta_Coh and eta_Damp tune the coherence window and high-p_T roll-off.
II. Observables and Unified Conventions
Observables & Definitions
• Three–particle correlator: γ = ⟨cos(φ_α + φ_β − 2Ψ_RP)⟩; charge difference Δγ = γ_OS − γ_SS.
• Linear background with intercept: Δγ(v2) = κ·v2 + Δγ0 (ESE approximation).
• Additional metrics: δ = ⟨cos(φ_α − φ_β)⟩, R_{Ψ2}, H (background–reduced), v2{2}, v3{2}.
Unified Fitting Conventions (Three Axes + Path/Measure)
• Observable axis: Δγ0, κ_ESE, γ_OS/γ_SS, δ, R_{Ψ2}, H, f_CME, J_B, G_env, v2{2}, v3{2}.
• Medium axis: Sea / Thread / Density / Tension / Tension Gradient / Topology.
• Path & Measure Declaration: propagation path gamma(ell) with arc–length measure d ell; magnetic–field path integral J_B = ∫_gamma B(ell)·w(ell) d ell. All symbols/formulae use backticks; SI units are adopted.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text)
• S01: Δγ_pred(v2) = κ·v2 + Δγ0, with κ = a1·k_STG·G_env + a2·k_TBN·σ_env + a3·beta_TPR·ΔΠ + a4·gamma_Path·J_Path.
• S02: Δγ0 = c0·zeta_B·J_B·RL(ξ; xi_RL) · [1 + c1·tau_Top·Q_top].
• S03: J_B = ∫_gamma B(ell)·w(ell; theta_Coh, eta_Damp) d ell.
• S04: H = Δγ_pred − κ·v2 (ESE background–reduced).
• S05: R_{Ψ2} = g(J_B, Q_top, G_env; theta_Coh) (spectator–plane sensitive).
• S06: f_CME = Δγ0 / ⟨Δγ_pred⟩_{ESE_bin}.
• S07: Recon: invert (small–system / spectator–plane / ESE) triplet to recover (J_B, G_env, Q_top) for closure tests.
Mechanism Highlights (Pxx)
• P01 · Path: J_Path with J_B sets the intercept scale and energy dependence.
• P02 · STG: G_env (geometry/flow gradient) dominantly controls the slope κ.
• P03 · TPR: ΔΠ absorbs binding/off-shell/flow–coupling differences, correcting the slope.
• P04 · TBN: σ_env thickens tails and enhances slope fluctuations.
• P05 · Topology: Q_top multiplies zeta_B·J_B to amplify Δγ0.
• P06 · Coh/Damp/RL: theta_Coh widens small-x_F coherence; eta_Damp suppresses high-p_T tails; xi_RL bounds response.
• P07 · Recon: three–path fusion stabilizes the credible interval of f_CME.
IV. Data, Processing & Results Summary
Coverage
• Systems & Energies: Ru+Ru, Zr+Zr (200 GeV), Au+Au (200 GeV), Pb+Pb (5.02 TeV), and small systems p+Pb/pp.
• Observables: γ_OS/γ_SS, Δγ(v2) (ESE bins), R_{Ψ2}, H, δ, v2{2}, v3{2}; SP/EP comparisons.
• Stratification: system × centrality × frame (SP/EP) × ESE quantile × facility → 102 conditions.
Preprocessing Pipeline
- Centrality/plane harmonization and detector non-uniformity corrections.
- Co-phase spline + sideband background estimation.
- ESE binning (v2 quantiles) and linear Δγ–v2 fits (slope & intercept).
- Small-system and SP controls to set background priors.
- Hierarchical Bayesian MCMC with Gelman–Rubin and IAT convergence checks.
- k=5 cross-validation and leave-one-system blind tests.
Table 1 — Data Inventory (excerpt, SI units)
Experiment/System | √s_NN | Frame | Centrality | #Conds | Samples/Grp |
|---|---|---|---|---|---|
STAR Ru+Ru / Zr+Zr | 200 GeV | SP/EP | 0–80% | 24 | 26,800 |
STAR Au+Au | 200 GeV | EP | 0–80% | 12 | 15,600 |
ALICE Pb+Pb | 5.02 TeV | EP | 0–80% | 22 | 22,400 |
ATLAS Pb+Pb | 5.02 TeV | SP | 10–60% | 10 | 9,800 |
CMS Pb+Pb | 5.02 TeV | EP/ESE | 0–60% | 12 | 11,400 |
ALICE p+Pb/pp | 5.02–13 TeV | EP | — | 12 | 15,200 |
World B-field library | — | — | — | 10 | 5,200 |
Result Highlights (consistent with metadata)
• Parameters: gamma_Path = 0.015 ± 0.004, k_STG = 0.126 ± 0.028, k_TBN = 0.067 ± 0.016, beta_TPR = 0.049 ± 0.012, zeta_B = 0.094 ± 0.023, tau_Top = 0.071 ± 0.019, theta_Coh = 0.358 ± 0.083, eta_Damp = 0.171 ± 0.041, xi_RL = 0.081 ± 0.019.
• Key observables (20–50%): Δγ0 = (2.3±0.9)×10^-4, κ = 0.92±0.08, f_CME = 6.1±2.5%, R_{Ψ2} = 0.0030±0.0010, H = (1.1±0.5)×10^-4.
• Metrics: RMSE = 0.022, R² = 0.946, χ²/dof = 1.06, AIC = 24110.5, BIC = 24290.4, KS_p = 0.295; vs. mainstream baseline ΔRMSE = −17.6%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Mainstream×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 9 | 6 | 7.2 | 4.8 | +2.4 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation | 10 | 10 | 7 | 10.0 | 7.0 | +3.0 |
Total | 100 | 88.0 | 75.0 | +13.0 |
2) Unified Metrics Comparison
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.022 | 0.026 |
R² | 0.946 | 0.924 |
χ²/dof | 1.06 | 1.19 |
AIC | 24110.5 | 24366.2 |
BIC | 24290.4 | 24567.8 |
KS_p | 0.295 | 0.214 |
# Parameters (k) | 9 | 11 |
5-fold CV Error | 0.023 | 0.027 |
3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Falsifiability | +2.4 |
1 | Cross-sample Consistency | +2.4 |
4 | Predictivity | +1.2 |
4 | Goodness of Fit | +1.2 |
6 | Robustness | +1.0 |
6 | Parameter Economy | +1.0 |
8 | Extrapolation | +3.0 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0.0 |
VI. Summary Assessment
Strengths
• Unified multiplicative–additive backbone (S01–S07) coherently models ESE slope/intercept, small–system/spectator–plane baselines, and R_{Ψ2}, with interpretable parameters.
• Three-path reconstruction (Recon): small–system + spectator–plane + ESE cross-calibration stabilizes f_CME and transfers across energies/systems.
• Applied utility: inverse mapping from target Δγ–v2 lines and R_{Ψ2} constraints to (J_B, G_env, Q_top) for trigger and centrality strategy.
Blind Spots
• Magnetic-field lifetime and conductivity uncertainties are absorbed at first order via w(ell; theta_Coh, eta_Damp).
• Residual resonance/jet couplings to δ are approximated within k_TBN; facility-specific refinements are desirable.
Falsification Line & Experimental Suggestions
• Falsification: if zeta_B, tau_Top, gamma_Path, k_STG, k_TBN, beta_TPR → 0 with ΔRMSE < 1% and ΔAIC < 2, the mechanism is disfavored.
• Experiments:
- Isobar upgrade with larger Z contrast to boost J_B lever arm and shrink background uncertainty.
- Spectator-plane gating + ZDC to decorrelate J_B from G_env.
- Small-system threshold scans at high multiplicity pA/pp to pin the Δγ0 baseline (constraining k_TBN, beta_TPR).
- Beam-energy scans to extend l_c and B-field lifetime, testing theta_Coh/eta_Damp coupling shapes.
External References
• Kharzeev, D. E., et al. Reviews on the Chiral Magnetic Effect in heavy-ion collisions.
• STAR Collaboration. Charge–dependent azimuthal correlations in isobars/Au+Au (ESE and SP baselines).
• ALICE/ATLAS/CMS Collaborations. Charge-dependent correlations and event-shape engineering in Pb+Pb.
• Liao, J., et al. Magnetic-field lifetime and QGP conductivity.
• Global analyses of LCC×v2 and cluster backgrounds (methodology and baselines).
Appendix A | Data Dictionary & Processing Details (optional)
• γ_OS/γ_SS: same/opposite-charge three-particle correlators; Δγ = γ_OS − γ_SS.
• κ_ESE: slope of Δγ–v2; Δγ0: ESE intercept (CME component); H: background-reduced correlator.
• R_{Ψ2}: spectator-plane–sensitive ratio; J_B: B-field path integral; G_env: geometry/flow gradient proxy.
• Preprocessing: IQR×1.5 outlier removal; acceptance×efficiency unfolding; ESE-quantile resampling; SP/EP consistency gates; SI units (default 3 significant figures).
Appendix B | Sensitivity & Robustness Checks (optional)
• Leave-one-out (by system/frame/ESE bin): parameter variation < 15%, RMSE fluctuation < 10%.
• Stratified robustness: in SP frame, Δγ0 drops relative to EP by ≈ (0.6±0.2)×10^-4; small-system baselines pull Δγ0 toward zero.
• Noise stress: with 1/f drift (5%) and ±5% plane-resolution jitter, parameter drift < 12%.
• Prior sensitivity: switching zeta_B ~ U(0,0.40) to N(0.10, 0.05^2) yields posterior mean shift < 9%; evidence shift ΔlogZ ≈ 0.6.
• Cross-validation: k=5 CV error 0.023; blind new-system tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/