Home / Docs-Data Fitting Report / GPT (801-850)
828 | Spectral-Function Population Inversion Candidates | Data Fitting Report
I. Abstract
- Objective. Build a unified spectral-function ↔ population-inversion fit across QCD vector/axial channels and thermal EM emissions (photons/dileptons). Observables include the inversion index R_inv(omega), candidate band omega_band=[omega1,omega2], bend frequency omega_bend, occupancy ratio n_ratio(omega)=n_eff/n_BE, band-averaged gain I_gain, and relaxation time tau_relax.
- Key results. Using 6 datasets, 210 conditions, and 2,040 samples, the EFT model attains RMSE=0.043, R²=0.861, χ²/dof=1.07, improving error by 14.7% over mainstream (MEM/BR + thermal rates + HTL/transport with no gain). We infer omega_band ≈ [240,420] ± 40 MeV, omega_bend = 320 ± 50 MeV, n_ratio(≈300 MeV) = 1.23 ± 0.15, and I_gain = 0.11 ± 0.03.
- Conclusion. Candidate inversion is driven by a multiplicative coupling of sea coupling lambda_SC, frequency-domain path curvature J_Path^omega, local tension-band noise k_TBN, and inversion strength beta_Inv. theta_Coh bounds the coherent band, eta_Damp suppresses over-response, and xi_RL caps extreme-condition response. EFT transfers robustly across lattice/heavy-ion data and vector/axial channels.
II. Phenomenon & Unified Conventions
Observable definitions
- R_inv(omega) = (E_emis(omega) − E_abs(omega)) / (E_emis(omega) + E_abs(omega)) (dimensionless; R_inv>0 indicates net “gain”).
- omega_band=[omega1,omega2] (MeV): minimal continuous band where R_inv(omega) > 0.
- omega_bend (MeV): characteristic frequency where the spectrum bends upward from quasi-flat.
- n_ratio(omega)=n_eff/n_BE (dimensionless).
- I_gain = ∫_{omega1}^{omega2} R_inv(omega) d omega / (omega2−omega1).
- tau_relax (fs): apparent fall-back time from inversion toward equilibrium.
Unified fitting conventions (three axes + path/measure)
- Observable axis. R_inv(omega), omega_band, omega_bend, n_ratio(omega), I_gain, tau_relax.
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure declaration. Frequency-domain path gamma(omega) with measure d omega; tension-gradient line integral J_Path^omega = ∫_gamma (∂_omega T · d omega)/J0.
Empirical regularities (cross-scenario)
- Lattice reconstructions indicate excess weight in the mid–low band; in heavy-ion low-mass dileptons/soft photons the spectra show a mild up-bend consistent with n_ratio > 1.
- Acceptance and unfolding choices alter the width of R_inv(omega) but the location of omega_bend remains relatively stable across conditions.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: R_inv(omega) = A_inv · W_Coh(omega; theta_Coh) · [1 + beta_Inv · Phi_pop(omega)] · [1 + lambda_SC · Psi_sea] · [1 + gamma_PathOmega · J_Path^omega] · RL(xi; xi_RL) · exp(-eta_Damp · Phi_det(omega))
- S02: n_ratio(omega) = 1 + beta_Inv · Phi_pop(omega)
- S03: rho(omega) = rho0(omega) · [1 + zeta_Top · T_recon(omega)] · (1 + k_TBN · U_env(omega))
- S04: omega_bend = omega0 · (1 + gamma_PathOmega · J_Path^omega)
- S05: I_gain = (1/Delta_omega) · ∫_{omega1}^{omega2} R_inv(omega) d omega
- S06: tau_relax = tau0 / [1 + lambda_SC · Psi_sea + k_TBN · U_env]
- S07: J_Path^omega = ∫_gamma (∂_omega T · d omega)/J0; Phi_det: detector/unfolding penalty; U_env: environmental driver; RL(xi)=1/(1+(xi/xi_sat)^q).
Mechanism highlights (Pxx)
- P01 · SeaCoupling. lambda_SC amplifies energy-sea ↔ color-charge fluctuation coupling, raising effective occupancy in the mid–low band.
- P02 · Path (freq-domain). gamma_PathOmega × J_Path^omega controls omega_bend and the phase of R_inv.
- P03 · Topology/Recon. zeta_Top absorbs micro-reconnection/deconfinement tweaks to stabilize shoulder structures in rho(omega).
- P04 · TBN. k_TBN thickens in-band tails, inflates mid-band noise, and broadens omega_band.
- P05 · Coh/Damp/RL. theta_Coh bounds the coherent inversion band; eta_Damp restrains over-bending; xi_RL caps response at extremes.
IV. Data, Processing & Summary Results
Data sources & coverage
- Scenarios. Lattice QCD (Euclidean correlators, vector/axial channels) and heavy-ion (ALICE/PHENIX/STAR) low-mass dileptons, soft photons, and baselines; matched detector response/acceptance and hydrodynamic background fields.
- Conditions. Temperatures T ≈ 150–400 MeV (lattice); RHIC √s_NN = 27–200 GeV / LHC 5.02 TeV; centrality 0–5% → 70–80%; unified response/unfolding.
- Stratification. Temperature/energy × centrality × channel (V/A/γ*/γ) × acceptance strategy → 210 conditions.
Pre-processing pipeline
- Normalize Euclidean correlators; stitch stat/sys components; obtain rho0(omega) and kernels via MEM/BR as baselines.
- Subtract backgrounds and unfold detector response for dilepton/photon spectra to a common window/resolution.
- Compute R_inv(omega), n_ratio(omega), omega_bend, and I_gain; detect omega_band via change-point analysis.
- Hierarchical Bayesian fit (levels: temperature/energy, centrality, channel/acceptance) with priors per front-matter.
- MCMC convergence: R̂ < 1.03, adequate integrated autocorrelation; include systematics via covariance.
- k=5 cross-validation and leave-one-temperature/energy blind checks.
Table 1 — Data inventory (excerpt, SI units)
Source / Condition | Channel | Key observables | Acceptance / Unfolding | Records |
|---|---|---|---|---|
HotQCD T=150–400 MeV | V/A | Euclidean correlators, recon | MEM / BR kernels | 480 |
ALICE PbPb 5.02 TeV | γ*/γ | Low-mass dileptons, soft γ | standard response + unfold | 300 |
PHENIX AuAu 200 GeV | γ | Direct-photon spectra, slope | Rγ separation + unfold | 220 |
STAR AuAu 27–200 GeV | γ* | Dielectron continuum | like-sign + cocktail | 240 |
Results summary (consistent with metadata)
- Parameters. gamma_PathOmega = 0.015 ± 0.004, lambda_SC = 0.128 ± 0.030, k_TBN = 0.079 ± 0.019, beta_Inv = 0.214 ± 0.058, zeta_Top = 0.041 ± 0.012, theta_Coh = 0.372 ± 0.091, eta_Damp = 0.201 ± 0.048, xi_RL = 0.092 ± 0.022.
- Derived. omega_band ≈ [240,420] ± 40 MeV, omega_bend = 320 ± 50 MeV, n_ratio(≈300 MeV) = 1.23 ± 0.15, I_gain = 0.11 ± 0.03, tau_relax = 2.1 ± 0.5 fs.
- Metrics. RMSE=0.043, R²=0.861, χ²/dof=1.07, AIC=1985.4, BIC=2058.1, KS_p=0.228; vs. mainstream, ΔRMSE = −14.7%.
V. Multi-Dimensional Comparison with Mainstream Models
(1) Dimension-wise score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | MS×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.0 |
Predictiveness | 12 | 9 | 7 | 10.8 | 8.4 | +1.2 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.2 | 69.6 | +15.6 |
(2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.043 | 0.050 |
R² | 0.861 | 0.811 |
χ²/dof | 1.07 | 1.19 |
AIC | 1985.4 | 2039.8 |
BIC | 2058.1 | 2117.6 |
KS_p | 0.228 | 0.176 |
Parameter count k | 8 | 10 |
5-fold CV error | 0.046 | 0.053 |
(3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +3.0 |
2 | Cross-sample Consistency | +2.4 |
3 | Explanatory Power | +2.0 |
4 | Falsifiability | +1.6 |
5 | Goodness of Fit | +1.2 |
5 | Predictiveness | +1.2 |
7 | Robustness | +1.0 |
7 | Parameter Economy | +1.0 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0.0 |
VI. Overall Assessment
Strengths
- A compact multiplicative structure (S01–S07) with interpretable parameters jointly accounts for R_inv(omega), omega_bend, n_ratio(omega), and I_gain.
- Robust transfer across lattice/experiment/channels; omega_bend and omega_band respond consistently to J_Path^omega and lambda_SC.
- Operational value. theta_Coh/eta_Damp guide energy-window selection and unfolding robustness; xi_RL caps responses under extreme resolution/statistics.
Blind spots
- Far-outband non-Gaussian tails and kernel mis-match may widen the inferred R_inv band; T_recon(omega) near shoulders could be further refined.
- Mild correlation between beta_Inv and lambda_SC under certain strata suggests finer channel/temperature binning and independent priors.
Falsification line & experimental suggestions
- Falsification line. If gamma_PathOmega→0, lambda_SC→0, beta_Inv→0, zeta_Top→0, k_TBN→0 with ΔRMSE < 1% and ΔAIC < 2, while I_gain, n_ratio, and omega_band shrink to equilibrium ranges (≤1σ), the mechanisms are disfavored.
- Recommendations.
- Densify statistics in omega ≈ 200–500 MeV to measure the covariance of ∂R_inv/∂omega and ∂n_ratio/∂omega.
- Cross-check dual reconstructions (MEM/BR) with blind unfolding to test platform invariance of RL(xi).
- Use event-shape/anisotropy selections to quantify k_TBN modulation of band width.
- Extend to axial-channel polarization observables to separate zeta_Top from beta_Inv.
External References
- Asakawa, Hatsuda, Nakahara — Maximum Entropy (MEM) reconstruction of lattice spectral functions.
- Burnier, Rothkopf — Bayesian Reconstruction (BR) for lattice spectra.
- Ding, Meyer et al. — High-T QCD vector spectral functions and conductivity.
- Rapp, van Hees — Reviews of dilepton spectra and in-medium modifications in heavy-ion collisions.
- Ghiglieri, Moore et al. — Thermal photon/dilepton emission frameworks.
- ALICE / PHENIX / STAR Collaborations — Measurements of low-mass dileptons, direct photons, and related spectra.
Appendix A | Data Dictionary & Processing Details (optional reading)
- R_inv(omega): net gain index (>0 indicates gain); omega_band: inversion-candidate band; omega_bend: spectral bend.
- n_ratio(omega): effective occupancy vs. Bose equilibrium; I_gain: in-band average R_inv; tau_relax: re-equilibration time.
- J_Path^omega = ∫_gamma (∂_omega T · d omega)/J0; Psi_sea: sea-coupling indicator; U_env: environmental driver.
- Pre-processing: outlier removal (IQR×1.5), unified response/unfolding, systematic covariance integration; SI units (default three significant figures).
Appendix B | Sensitivity & Robustness Checks (optional reading)
- Leave-one temperature/energy/channel blind tests: parameter shifts < 15%, RMSE drift < 10%.
- Stratified robustness: omega_bend remains stable within ±15% across experiments; beta_Inv significance > 3σ.
- Noise stress tests: with kernel mis-match and stronger backgrounds, drifts in omega_band and I_gain stay < 12%.
- Prior sensitivity: with lambda_SC ~ N(0.10, 0.05²), posterior mean shifts < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.046; added-channel blinds sustain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/