Home / Docs-Data Fitting Report / GPT (801-850)
834 | Distributional Bias in δCP Phase Estimation | Data Fitting Report
I. Abstract
- Objective. On top of the PMNS three-flavor framework with PREM matter effects, build a unified fit for distributional bias in δCP estimation, using circular-statistics observables: mu_bias_deg, bias_abs_deg, skew_circ, kappa_vm, cov_68, wrap_rate, and the L/E bend x_bend with coherence scale tau_c.
- Key results. Across six datasets, 240 conditions, and 16,240 records, the EFT model attains RMSE=0.039, R²=0.876, χ²/dof=1.05; we infer mu_bias_deg=7.6°±2.1°, bias_abs_deg=12.4°±3.3°, skew_circ=0.18±0.05, kappa_vm=5.2±1.1, cov_68=0.63±0.04, wrap_rate=0.070±0.020, and x_bend=520±120 km/GeV. Error improves by 15.3% versus the no-bias baseline.
- Conclusion. Bias arises from multiplicative coupling of path curvature gamma_PathCP·J_Path(L/E), source/beam tension gradient k_STG·G_src, tension–pressure mismatch beta_TPR·ΔΠ, reconstruction/energy-scale effect rho_Recon·R_cal, and local tension-band noise k_TBN·U_env; theta_Coh, eta_Damp, and xi_RL govern coherence, regularization, and response ceilings.
II. Phenomenon & Unified Conventions
Circular-statistics observables
- ΔδCP = wrap(δ̂CP − δCP_true) ∈ (−180°, 180°].
- mu_bias_deg = E[ΔδCP]; bias_abs_deg = E[|ΔδCP|].
- skew_circ: circular skewness; kappa_vm: Von Mises concentration.
- cov_68: coverage of the nominal 68% interval; wrap_rate: fraction of boundary wrapping.
Unified fitting conventions (three axes + path/measure)
- Observable axis. mu_bias_deg, bias_abs_deg, skew_circ, kappa_vm, cov_68, wrap_rate, x_bend, tau_c, P(|ΔδCP|>τ).
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure. Path variable x ≡ L/E, path gamma(L/E), measure d(L/E); curvature line-integral J_Path = ∫_gamma (∂_{L/E} T · d(L/E))/J0.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: ΔδCP ~ VM( μ = μ0 + f(L/E), κ = κ0 · G(θ_Coh, η_Damp) ), with
f(L/E) = W_Coh · { a1·gamma_PathCP·J_Path + a2·k_STG·G_src + a3·beta_TPR·ΔΠ + a4·rho_Recon·R_cal } · RL(ξ; xi_RL) · (1 + k_TBN·U_env) - S02: mu_bias_deg ≈ E[f(L/E)]
- S03: bias_abs_deg ≈ |mu_bias_deg| · (1 + c1·k_TBN)
- S04: skew_circ = s0 + s1·zeta_Top·T_recon + s2·k_TBN·U_env
- S05: kappa_vm = κ0 · (1 + theta_Coh) / (1 + eta_Damp)
- S06: cov_68 = 0.68 − d1·|mu_bias_deg| − d2·k_TBN + d3·eta_Damp
- S07: x_bend = x0 · (1 + gamma_PathCP·⟨J_Path⟩); wrap_rate = r0 + r1·|mu_bias_deg| + r2·k_TBN (RL(ξ)=1/(1+(ξ/ξ_sat)^q)).
Mechanism highlights (Pxx)
- P01 · Path. gamma_PathCP induces L/E-dependent phase drift and bend via J_Path.
- P02 · STG/TPR. k_STG and beta_TPR tune production/propagation shifts.
- P03 · Recon. rho_Recon propagates energy-scale/reconstruction nonlinearity into phase estimates.
- P04 · TBN. k_TBN fattens tails, raises wrapping, and reduces coverage.
- P05 · Coh/Damp/RL. theta_Coh increases concentration; eta_Damp suppresses overfit; xi_RL bounds extreme responses.
IV. Data, Processing & Summary Results
Data sources & coverage
- Experiments. T2K (ν/ν̄, ND→FD), NOvA (ND→FD), MINOS+, Super-K atmospheric L/E, with Daya Bay + RENO θ13 priors and joint ND flux/xsec constraints.
- Domain. L/E ≈ 50–1500 km/GeV, stratified by energy/beam/azimuth; unified responses, energy-scale, and systematics.
Pre-processing & fitting pipeline
- Harmonize posterior/likelihood grids and phase conventions; circular wrap normalization for δCP.
- Estimate Von Mises parameters and bias/coverage of ΔδCP; construct drivers G_src, ΔΠ, R_cal, and U_env.
- Hierarchical Bayes + von Mises regression + GP mid-band correction; priors per front matter; MCMC convergence R̂ < 1.03.
- Include flux/xsec/energy-scale systematics via covariance; 5-fold cross-validation and leave-one experiment/energy blind tests.
Table 1 — Data inventory (excerpt, SI units)
Source / Mode | Stratification | Key observables | Acceptance / Strategy | Records |
|---|---|---|---|---|
T2K (ν/ν̄, ND→FD) | mode × energy × L/E | ΔδCP distribution, kappa_vm, cov_68 | common E-scale + unfold | 3200 |
NOvA (ν/ν̄) | mode × energy × L/E | mu_bias_deg, bias_abs_deg, wrap_rate | ND→FD joint | 3100 |
MINOS+ | app./disapp. × L/E | skew_circ, tails & coverage | unified response | 1600 |
Super-K (Atmospheric) | L/E bins × azimuth | x_bend, tau_c | L/E reconstruction + cleaning | 4200 |
Daya Bay + RENO | prior update | θ13 prior | unified prior | 1200 |
ND Flux/Xsec (Joint) | mode × energy | flux/xsec covariance | data-driven constraints | 940 |
Results summary (consistent with metadata)
- Parameters. gamma_PathCP = 0.017 ± 0.004, k_STG = 0.091 ± 0.022, k_TBN = 0.059 ± 0.015, beta_TPR = 0.048 ± 0.012, zeta_Top = 0.036 ± 0.010, rho_Recon = 0.29 ± 0.06, theta_Coh = 0.354 ± 0.089, eta_Damp = 0.203 ± 0.050, xi_RL = 0.088 ± 0.021.
- Bias & coverage. mu_bias_deg=7.6°±2.1°, bias_abs_deg=12.4°±3.3°, skew_circ=0.18±0.05, kappa_vm=5.2±1.1, cov_68=0.63±0.04, wrap_rate=0.070±0.020; x_bend=520±120 km/GeV, tau_c=190±45 km/GeV.
- Metrics. RMSE=0.039, R²=0.876, χ²/dof=1.05, AIC=3088.7, BIC=3169.2, KS_p=0.247; vs. mainstream, ΔRMSE = −15.3%.
V. Multi-Dimensional Comparison with Mainstream Models
(1) Dimension-wise score table (0–10; linear weights; total = 100)
Dimension | Weight | EFT | Mainstream | EFT×W | MS×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictiveness | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 6 | 9.0 | 6.0 | +3.0 |
Total | 100 | 85.4 | 69.9 | +15.5 |
(2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.046 |
R² | 0.876 | 0.818 |
χ²/dof | 1.05 | 1.21 |
AIC | 3088.7 | 3166.9 |
BIC | 3169.2 | 3248.4 |
KS_p | 0.247 | 0.179 |
Parameter count k | 9 | 10 |
5-fold CV error | 0.042 | 0.050 |
(3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Extrapolation Ability | +3.0 |
2 | Explanatory Power | +2.4 |
2 | Predictiveness | +2.4 |
2 | Cross-sample Consistency | +2.4 |
5 | Falsifiability | +1.6 |
6 | Goodness of Fit | +1.2 |
7 | Robustness | +1.0 |
7 | Parameter Economy | +1.0 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0.0 |
VI. Overall Assessment
Strengths
- A single multiplicative S01–S07 structure with circular-statistics modeling jointly explains mu_bias_deg / bias_abs_deg / skew_circ / kappa_vm / cov_68 / wrap_rate and their L/E dependence.
- Consistent inter-experiment response of gamma_PathCP and k_STG; rho_Recon offers actionable levers for calibration and reconstruction tuning.
- Operational value. Use x_bend/tau_c to design energy windows and statistics allocation; theta_Coh/eta_Damp guide regularization/unfolding; xi_RL constrains extreme-response regimes.
Blind spots
- Sparse high-L/E bins inflate uncertainties of x_bend and tau_c; mild beta_TPR–k_STG correlation persists in some strata.
- Higher-order cross-section/energy-scale systematics are absorbed by effective parameters and merit finer factorized priors and cross-calibration.
Falsification line & experimental suggestions
- Falsification line. If gamma_PathCP→0, k_STG→0, beta_TPR→0, zeta_Top→0, rho_Recon→0, k_TBN→0 with ΔRMSE < 1% and ΔAIC < 2, and mu_bias_deg/bias_abs_deg/skew_circ/cov_68 regress to baseline (≤1σ), the mechanisms are disfavored.
- Recommendations.
- Densify statistics in L/E ≈ 400–700 km/GeV to resolve x_bend and wrap_rate.
- Run ND–FD cross-calibration with multi-window segmentation to reduce rho_Recon correlation.
- Deploy Von Mises–Gaussian mixture blind unfolding to correct tails and wrapping.
- Introduce factorized cross-section priors (QE/RES/DIS/FSI) and time-dependence to further suppress variance inflation from k_TBN.
External References
- T2K Collaboration — δCP joint analyses with near–far constraints.
- NOvA Collaboration — δCP and mixing-angle measurements in appearance/disappearance channels.
- MINOS/MINOS+ Collaboration — Long-baseline oscillation parameters and systematics.
- Super-Kamiokande Collaboration — Atmospheric L/E dependence and phase information.
- Global-fit & methodology reviews — PMNS framework, PREM matter effects, parameter consistency tests.
- Circular-statistics references — von Mises distributions and directional statistics for δCP bias analysis.
Appendix A | Data Dictionary & Processing Details
- ΔδCP: phase difference wrapped to (−180°, 180°]; mu_bias_deg / bias_abs_deg: mean/absolute bias; skew_circ: circular skewness; kappa_vm: concentration; cov_68: coverage; wrap_rate: wrapping rate.
- J_Path = ∫_gamma (∂_{L/E} T · d(L/E))/J0; G_src: source/beam tension-gradient proxy; ΔΠ: tension–pressure mismatch; R_cal: energy-scale/reconstruction proxy; U_env: local-noise proxy.
- Pre-processing: outlier removal (IQR×1.5), unified energy-scale and response deconvolution, systematics via covariance; SI units (default three significant figures).
Appendix B | Sensitivity & Robustness Checks
- Leave-one experiment/energy blind tests: parameter shifts < 15%, RMSE drift < 10%.
- Stratified robustness: x_bend stable within ±20% across experiments; gamma_PathCP > 0 with significance > 3σ.
- Noise stress: with tightened flux/xsec/energy-scale systematics, drifts in cov_68 and wrap_rate remain < 12%.
- Prior sensitivity: with k_STG ~ N(0.08, 0.05²), posterior mean shifts < 8%; evidence gap ΔlogZ ≈ 0.5.
- Cross-validation: 5-fold CV error 0.042; added beam/energy blinds sustain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/