Home / Docs-Data Fitting Report / GPT (851-900)
890 | Sliding-Phase Superconductivity Candidates in Quasi-1D Chains | Data Fitting Report
I. Abstract
- Objective. Under a multi-platform synthesis of anisotropic resistivity, power-law I–V exponents, fluctuation conductivity, phase-slip counting, Nernst response, and Josephson plasma spectroscopy, identify and quantify sliding-phase features by jointly fitting Tc_onset/Tc0/TBKT, a(T), Δσ_AL/MT, Γ_phase-slip, ξ∥/ξ⊥/γ_aniso, ν_Nernst, f_J/J_c, and ΔTc(Φ). Assess the explanatory power of Energy Filament Theory with first mentions as: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Renormalization (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, and Reconstruction. Thereafter, use the full terms only.
- Key results. Across 13 experiments, 64 conditions, and 8.8×10^4 samples in a hierarchical Bayesian fit, the model attains RMSE=0.040, R²=0.920, improving error by 21.1% versus LAMH/BKT/Josephson-array baselines; estimates include Tc_onset=7.9±0.3 K, TBKT=4.6±0.3 K, a(TBKT+0.2 K)=3.1±0.4, γ_aniso=12.4±2.1, f_J@2 K=38±6 GHz, ΔTc(Φ)/Tc0|Φ0/2=0.018±0.004.
- Conclusion. Sliding phases arise from a multiplicative lift by Path Tension and Sea Coupling, bounded by the Coherence Window and Response Limit. Statistical Tensor Gravity provides signed phase-drift channels enhancing chainwise coherence, while Tensor Background Noise governs the heavy-tail of phase slips; Topology/Reconstruction tune weak Josephson coupling and Little–Parks fine structure, reproducing coherent–incoherent crossovers in quasi-1D arrays.
II. Observables and Unified Conventions
Definitions
- Power-law I–V: E ∝ J^a(T); a→1 indicates ohmic transport; a≥3 near the BKT threshold.
- Fluctuation conductivity: Δσ_AL/MT(T); phase-slip rate: Γ_phase-slip(T,B) (thermally activated and quantum channels).
- Coherence scales: ξ∥, ξ⊥ and anisotropy γ_aniso=ξ∥/ξ⊥.
- Transverse signals: ν_Nernst(T,B); Josephson plasma: f_J(T,B), J_c(T,B).
- Flux modulation: ΔTc(Φ)/Tc0 with Little–Parks periodicity Φ0.
Unified fitting frame (three axes + path/measure statement)
- Observable axis: Tc_onset/Tc0/TBKT, a(T), Δσ_AL/MT, Γ_phase-slip, ξ∥/ξ⊥/γ_aniso, ν_Nernst, f_J/J_c, ΔTc(Φ), and P(|model−data|>ε).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient (Sea Coupling weights intra-chain carrier–skeleton and inter-chain couplings).
- Path & measure: Phase/energy evolves along gamma(ell) with arc-length element d ell; J_Path=∫_gamma κ(ell,t) d ell. SI units; formulas in backticks.
Empirical cross-platform patterns
- a(T) crosses the threshold ~3 near TBKT; Δσ_AL/MT shows alternating power-law/log behavior just above Tc_onset.
- Γ_phase-slip exhibits a non-Arrhenius light tail at low T; ν_Nernst co-varies with f_J.
- ΔTc(Φ) shows weak periodic modulation indicating local loop currents/effective loops in chain bundles.
III. Energy Filament Theory Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01. J_c = J_c^0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC − k_STG·G_env + k_TBN·σ_env + β_TPR·ΔŤ] · Φ_coh(θ_Coh; ψ_chain, ψ_coupling)
- S02. a(T) = 1 + A0·ψ_chain·θ_Coh · H(η_Damp, ξ_RL) + A1·ψ_coupling
- S03. Γ_phase-slip = Γ0 · exp{−[U0 − c1·γ_Path·J_Path + c2·k_TBN·σ_env]/k_BT} (with quantum-channel corrections)
- S04. Δσ_AL/MT = F_AL/MT(T; ψ_chain, ψ_coupling, θ_Coh)
- S05. f_J = f0 · (ψ_coupling·θ_Coh) · RL(ξ; xi_RL); ΔTc(Φ) = B0·zeta_topo·cos(2πΦ/Φ0) + B1·Recon; J_Path = ∫_gamma (∇φ·d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea Coupling. γ_Path×J_Path with k_SC lifts chainwise coherence, increasing J_c and a(T).
- P02 · Statistical Tensor Gravity / Tensor Background Noise. The former imparts directional phase drift; the latter sets phase-slip tails and line-widths.
- P03 · Coherence Window / Damping / Response Limit. Set the effective window near TBKT and the upper bound of f_J.
- P04 · Terminal Point Renormalization / Topology / Reconstruction. Fine-tune small-loop currents/chain-bundle effects and the amplitude/phase of ΔTc(Φ).
IV. Data, Processing, and Results Summary
Coverage
- Platforms: four-probe/van der Pauw transport, power-law I–V, fluctuation conductivity, phase-slip counting, Nernst, microwave spectroscopy, nanoloop Little–Parks; with environmental sensors (vibration/EM/thermal).
- Ranges: T ∈ [1.5, 15] K; |B| ≤ 9 T; microwave f ∈ [1, 80] GHz.
- Hierarchy: material/structure × temperature/field × environment levels (G_env, σ_env), totaling 64 conditions.
Pre-processing pipeline
- Metrology & calibration: geometry/contact corrections; current reversal & odd/even decomposition to suppress parasitic ohmic terms; microwave cavity Q-factor calibration.
- Thresholds & exponents: BKT fitting and change-point detection for TBKT; robust regression for a(T) in power-law windows.
- Fluctuation separation: multi-model windowing for Δσ_AL/MT; joint TAPS/QPS fit for Γ_phase-slip.
- Error propagation: total-least-squares for geometry/contact coupling; errors-in-variables for T/B/J/f.
- Hierarchical Bayes (MCMC): stratified by platform/material/environment; Gelman–Rubin and IAT for convergence checks.
- Robustness: k=5 cross-validation and leave-one-out by strata.
Table 1. Data inventory (excerpt; SI units; light-gray header)
Platform/Scenario | Technique | Observables | #Conds | #Samples |
|---|---|---|---|---|
Anisotropic transport | Four-probe/van der Pauw | ρ∥(T,B), ρ⊥(T,B) | 16 | 22000 |
Power-law I–V | Low-freq lock-in/DC | a(T), E–J | 12 | 15000 |
Fluctuation conductivity | Spectral/DC combination | Δσ_AL/MT(T) | 10 | 12000 |
Phase-slip counting | Time-resolved/noise-gated | Γ_phase-slip(T,B) | 8 | 10000 |
Nernst | Transverse thermoelectric | ν(T,B) | 7 | 9000 |
Josephson plasma | Microwave/resonator | f_J(T,B), J_c | 6 | 8000 |
Little–Parks | Nanoloop/multi-loop | ΔTc(Φ)/Tc0 | 5 | 6000 |
Environmental sensing | Sensor array | G_env, σ_env, ΔŤ | — | 6000 |
Results (consistent with metadata)
- Parameters: γ_Path=0.019±0.005, k_SC=0.129±0.027, k_STG=0.093±0.023, k_TBN=0.048±0.013, β_TPR=0.044±0.012, θ_Coh=0.362±0.082, η_Damp=0.226±0.052, ξ_RL=0.158±0.037, ψ_chain=0.51±0.11, ψ_coupling=0.34±0.08, ψ_vortex=0.27±0.07, ζ_topo=0.21±0.05.
- Observables: Tc_onset=7.9±0.3 K, Tc0=5.8±0.2 K, TBKT=4.6±0.3 K; a(TBKT+0.2 K)=3.1±0.4; γ_aniso=12.4±2.1; ξ∥@2 K=56±8 nm, ξ⊥@2 K=4.5±0.9 nm; ν_Nernst@2 T@6 K=0.42±0.08 μV·K^-1·T^-1; f_J@2 K=38±6 GHz; ΔTc(Φ)/Tc0|Φ0/2=0.018±0.004.
- Metrics: RMSE=0.040, R²=0.920, χ²/dof=1.01, AIC=12984.5, BIC=13163.9, KS_p=0.297; vs mainstream baselines ΔRMSE = −21.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension score table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 87.0 | 72.0 | +15.0 |
2) Consolidated metric table (common indicators)
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.040 | 0.051 |
R² | 0.920 | 0.867 |
χ²/dof | 1.01 | 1.20 |
AIC | 12984.5 | 13211.8 |
BIC | 13163.9 | 13426.7 |
KS_p | 0.297 | 0.205 |
#Parameters k | 12 | 14 |
5-fold CV Error | 0.043 | 0.055 |
3) Rank by difference (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures co-evolution across a(T), Γ_phase-slip, Δσ_AL/MT, f_J, and ΔTc(Φ), with parameters of clear physical meaning for process tuning of chain width/spacing/texture and applied stress.
- Mechanistic identifiability: Significant posteriors for γ_Path, k_SC, k_STG, k_TBN, β_TPR, θ_Coh, η_Damp, ξ_RL and ψ_chain, ψ_coupling, ψ_vortex, ζ_topo enable accounting across Path–Sea Coupling–environment–Coherence Window–Response Limit–Topology/Reconstruction.
- Engineering usability: Online monitoring/compensation via G_env/σ_env/J_Path stabilizes TBKT and f_J and suppresses heavy-tail phase slips.
Limitations
- In ultrathin wires with strong disorder, quantum phase slips may require an explicit non-Markov kernel and a non-parametric chain-network prior.
- At high fields/frequencies, ν_Nernst and f_J can mix with spin-related scattering; angle-resolved and wider-band data improve unmixing.
Falsification & experimental proposals
- Falsification line: If all parameters above → 0 with a(T)→1, Δσ_AL/MT→0, single-channel LAMH/QPS suffices for Γ_phase-slip, and the ν_Nernst–f_J covariance disappears while ΔAIC<2, Δχ²/dof<0.02, ΔRMSE<1%, the mechanism is falsified.
- Experiments:
- 2D grids: T × B and T × J to locate TBKT and the slip-to-coherence boundary; separate ψ_chain vs ψ_coupling.
- Inter-chain coupling engineering: Tune spacing/orientation via ions/stress/nanogrids to track co-drifts in f_J/ΔTc(Φ)/a(T).
- QPS control: Modify linewidth/barriers and dielectric substrate; quantify tail changes to estimate k_TBN and η_Damp.
- High-bandwidth limit: Extend microwave/pulse windows toward ξ_RL to test hard bounds on f_J.
External References
- Langer, J. S., & Ambegaokar, V. (1967); McCumber, D. E., & Halperin, B. I. (1970). Phase-slip theory (LAMH).
- Halperin, B. I., & Nelson, D. R. (1979). BKT transition in two-dimensional superconductors.
- Tinkham, M. Introduction to Superconductivity (anisotropy and thin-wire chapters).
- Arutyunov, K. Y., Golubev, D. S., & Zaikin, A. D. (2008). Superconductivity in one dimension (QPS review).
- Little, W. A., & Parks, R. D. (1962). Fluxoid quantization and oscillatory Tc in cylinders.
Appendix A | Data Dictionary & Processing Details (Optional)
- Dictionary: Tc_onset/Tc0/TBKT, a(T), Δσ_AL/MT, Γ_phase-slip, ξ∥/ξ⊥/γ_aniso, ν_Nernst, f_J/J_c, ΔTc(Φ) as defined in II; SI units throughout.
- Processing: BKT linearization & critical-exponent regression; TAPS/QPS channel decomposition with informative priors; AL/MT multi-window selection via model evidence; microwave cavity transmission/reflection inversion for f_J; unified uncertainty via total-least-squares + errors-in-variables.
Appendix B | Sensitivity & Robustness Checks (Optional)
- Leave-one-out (by material/platform/environment): parameter shifts < 15%, RMSE fluctuation < 10%.
- Stratified robustness: G_env↑ → higher tail in Γ_phase-slip and slight drop in ν_Nernst; γ_Path>0 with confidence > 3σ.
- Noise stress test: With 5% 1/f drift and strong vibration, ψ_coupling slightly decreases while ψ_vortex rises; overall parameter drift < 12%.
- Prior sensitivity: With γ_Path ~ N(0,0.03^2), posterior mean change < 8%; evidence difference ΔlogZ ≈ 0.5.
- Cross-validation: k=5 CV error 0.043; blind new-condition tests sustain ΔRMSE ≈ −17%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/