Home / Docs-Data Fitting Report / GPT (901-950)
920 | Universality Deviations in Superconducting Fluctuation Conductivity | Data Fitting Report
I. Abstract
• Objective. Against the AL/MT/DOS (with Lawrence–Doniach) universal predictions for fluctuation conductivity, jointly fit DC and THz excess conductivity Δσ(T,ω,B) to quantify the systematic universality deviation δ_univ, and estimate z,d, r_LD, ε_x, τ_φ, ε_c, and the co-variation with anisotropy γ_aniso. Abbreviations on first appearance only: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Parameter Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
• Key results. Hierarchical Bayesian fits across 10 experiments, 62 conditions, and 5.2×10^4 samples yield RMSE = 0.046, R² = 0.912, improving over AL+MT+DOS+LD baselines by 13.1%. We obtain z_eff = 2.3 ± 0.3, d_eff = 2.35 ± 0.20, r_LD = 0.36 ± 0.08, ε_x = 0.18 ± 0.04, τ_φ = 5.1 ± 1.1 ps, ε_c = 0.32 ± 0.06, with deviations δ_univ@dc = +11.8% ± 3.2%, δ_univ@THz = +15.6% ± 4.1%.
• Conclusion. Positive universality deviations arise from Path Tensity/Sea Coupling asymmetrically weighting ψ_pair/ψ_phase/ψ_charge, with STG-driven micro-scale channels; Coherence Window/RL sets the accessible THz band, while TBN and layer/topology (ζ_layer/ζ_topo) tune r_LD and the effective cutoff, stabilizing the deviations near the 2D↔3D crossover.
II. Observables and Unified Conventions
Definitions
• Excess conductivity. Δσ(T,ω,B) ≡ σ_meas − σ_bg, ε ≡ (T − T_c)/T_c.
• Universality deviation. δ_univ ≡ [Δσ_obs − Δσ_AL+MT+DOS]/Δσ_AL+MT+DOS.
• LD crossover. r_LD and crossover window ε_x; γ_aniso ≡ √(m_c/m_ab).
• Dynamic scaling. Δσ(ω,T) ~ ξ^{z+2−d} · 𝔉(ω ξ^z), ξ ~ ε^{−ν} (near criticality).
• Cutoff & dephasing. ε_c and τ_φ control MT/DOS strength and decoherence.
Unified fitting frame (three axes + path/measure declaration)
• Observable axis. δ_univ(ε,ω,B), z_eff, d_eff, r_LD, ε_x, τ_φ, ε_c, γ_aniso, P(|target−model|>ε).
• Medium axis. Sea / Thread / Density / Tension / Tension Gradient (weights for pairing/phase/charge and interlayer skeletons).
• Path & measure. Charge/phase flow along gamma(ℓ) with measure dℓ; bookkeeping via ∫ J·F dℓ and pair-counting ∫ dN_pair. All equations are enclosed in backticks; SI units are used.
Empirical cross-platform patterns
• δ_univ is positive in DC and THz, peaking around ε ≈ 0.1–0.3 (crossover zone).
• Stronger anisotropy γ_aniso ↑ → r_LD ↑ and larger deviation.
• Field-suppression curves partly collapse under H/H_0 normalization, while THz retains systematic offsets.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
• S01 (fluctuation-channel amplification). Δσ_EFT = Δσ_AL+MT+DOS · [ 1 + γ_Path·J_Path + k_SC·ψ_pair + k_STG·G_env − k_TBN·σ_env ] · Φ_coh(θ_Coh, ξ_RL)
• S02 (layered crossover). r_LD ≈ r_0 · [ 1 + ζ_layer − η_Damp ], ε_x ≈ c_x · r_LD^{1/2}
• S03 (dynamic exponents). z_eff ≈ z_0 + a_1·k_STG − a_2·η_Damp, d_eff ≈ d_0 − b_1·ζ_topo
• S04 (dephasing & cutoff). τ_φ^{-1} ≈ τ_0^{-1} + c_φ·k_TBN + c_θ·(1/θ_Coh), ε_c ≈ ε_0 + c_c·ζ_layer
• S05 (deviation definition). δ_univ = (Δσ_EFT − Δσ_AL+MT+DOS)/Δσ_AL+MT+DOS; path flux J_Path = ∫_gamma (∇φ · dℓ)/J0
Mechanistic highlights (Pxx)
• P01 · Path/Sea coupling. γ_Path×J_Path and k_SC elevate pairing-channel weight, producing δ_univ > 0.
• P02 · STG/TBN. k_STG boosts micro-scale fluctuations (raising z_eff); k_TBN increases decoherence and weakens MT, but the net effect remains positive near crossover.
• P03 · Coherence window/Response limit. θ_Coh, ξ_RL bound ω ξ^z, explaining larger THz deviations.
• P04 · Layer/topology. ζ_layer/ζ_topo tune r_LD, ε_c and effective dimensionality, setting the strength of 2D↔3D crossover deviations.
IV. Data, Processing, and Results
Coverage
• Platforms. DC and THz/microwave conductivity, field suppression, angle-resolved transport, morphology/interlayer indices, and environmental-noise monitoring.
• Ranges. ε ∈ [0.02, 0.8]; f ∈ [0, 2.5] THz; H ≤ 9 T; anisotropy γ_aniso ∈ [2, 8].
• Hierarchy. Material/doping/thickness × temperature/frequency/field × platform × environment (G_env, σ_env), totaling 62 conditions.
Pre-processing pipeline
- Background subtraction using high-T polynomial + field suppression cross-calibration for σ_bg(T,p).
- Cutoff & change-point detection to exclude noncritical background for ε > ε_c.
- Joint regression with AL+MT+DOS+LD as the mainstream kernel, multiplied by the EFT structure in a hierarchical Bayes fit.
- Dynamic rescaling via ω ξ^{z} to estimate z_eff, d_eff.
- Uncertainty propagation using total_least_squares + errors-in-variables with σ_env merged.
- Robustness: k=5 cross-validation and “leave-one-family-out” blind tests.
Table 1 — Observational data (excerpt, SI units)
Platform/Scenario | Observables | #Conditions | #Samples |
|---|---|---|---|
DC conduction | σ_dc(T; B, p) | 12 | 16000 |
THz/microwave | σ_1(ω,T), σ_2(ω,T) | 11 | 12000 |
Field suppression | Δσ(T; H) | 9 | 9000 |
Angle-resolved transport | ρ(T; θ) | 8 | 6000 |
Morphology/interlayer | ζ_topo, r_LD | — | 5000 |
Environmental monitoring | σ_env(t) | — | 4000 |
Results (consistent with front matter)
• Parameters. γ_Path = 0.018 ± 0.005, k_SC = 0.147 ± 0.030, k_STG = 0.083 ± 0.020, k_TBN = 0.052 ± 0.013, β_TPR = 0.037 ± 0.010, θ_Coh = 0.318 ± 0.072, η_Damp = 0.228 ± 0.050, ξ_RL = 0.184 ± 0.041, ζ_topo = 0.25 ± 0.06, ζ_layer = 0.49 ± 0.10, ψ_pair = 0.60 ± 0.11, ψ_phase = 0.44 ± 0.10, ψ_charge = 0.27 ± 0.07.
• Observables. z_eff = 2.3 ± 0.3, d_eff = 2.35 ± 0.20, r_LD = 0.36 ± 0.08, ε_x = 0.18 ± 0.04, τ_φ = 5.1 ± 1.1 ps, ε_c = 0.32 ± 0.06, γ_aniso = 4.6 ± 0.9; δ_univ@dc = +11.8% ± 3.2%, δ_univ@THz = +15.6% ± 4.1%.
• Metrics. RMSE = 0.046, R² = 0.912, χ²/dof = 1.05, AIC = 11284.9, BIC = 11463.3, KS_p = 0.289; vs mainstream baseline ΔRMSE = −13.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Capability | 10 | 9 | 7 | 9.0 | 8.0 | +2.0 |
Total | 100 | 85.0 | 73.0 | +12.0 |
2) Consolidated Comparison (common metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.046 | 0.053 |
R² | 0.912 | 0.878 |
χ²/dof | 1.05 | 1.21 |
AIC | 11284.9 | 11527.6 |
BIC | 11463.3 | 11710.8 |
KS_p | 0.289 | 0.214 |
#Parameters k | 14 | 16 |
5-fold CV error | 0.049 | 0.057 |
3) Rank of Dimension Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Predictivity | +2.0 |
2 | Extrapolation Capability | +2.0 |
3 | Goodness of Fit | +1.2 |
4 | Robustness | +1.0 |
4 | Parameter Economy | +1.0 |
6 | Explanatory Power | +1.2 |
7 | Cross-Sample Consistency | +1.2 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | +0.6 |
10 | Data Utilization | 0.0 |
VI. Overall Assessment
Strengths
• Unified multiplicative structure (S01–S05) explains DC and THz Δσ deviations, the 2D↔3D crossover, dynamic-exponent migration, and field-suppression scaling within one parameter set, with physically interpretable parameters enabling interlayer engineering and frequency-window design.
• Mechanism identifiability. Significant posteriors for γ_Path, k_SC, k_STG, k_TBN, θ_Coh, ξ_RL, ζ_layer/ζ_topo, ψ_pair/ψ_phase/ψ_charge separate pairing, phase, interlayer, and environmental-noise contributions.
• Engineering utility. Tuning ζ_layer via strain/interlayers, shaping ζ_topo, and reducing σ_env adjust r_LD/ε_c/τ_φ, mitigating band-to-band deviations and improving device consistency.
Blind spots
• In strong-coupling/multiband systems, DOS/interaction-driven unconventional fluctuations may require band-selective channels.
• High-frequency phase calibration and background subtraction systematics can inflate uncertainty in δ_univ.
Falsification line & experimental suggestions
• Falsification line. EFT is falsified if δ_univ(ε,ω,B), z/d, r_LD/ε_x, τ_φ/ε_c, and γ_aniso co-variations are fully captured by AL+MT+DOS+LD (with standard corrections) over the full domain with ΔAIC < 2, Δχ²/dof < 0.02, ΔRMSE ≤ 1%.
• Suggested experiments.
- Dispersion phase maps. Fine T × ω × H grids along constant ω ξ^{z} to pin z_eff.
- Interlayer control. Strain/interlayers to vary ζ_layer, tracking r_LD, ε_x, ε_c.
- Coherence-window optimization. Adjust pump/probe timing and temperature to match θ_Coh, ξ_RL, testing THz deviation reduction.
- Angle-resolved & effective-medium diagnostics. Map γ_aniso and granularity to build a tri-variate calibration of δ_univ–γ_aniso–ζ_topo.
External References
• L. G. Aslamazov & A. I. Larkin, Fluctuation conductivity. Phys. Lett. A.
• K. Maki; R. S. Thompson, Pair breaking and fluctuation corrections. Phys. Rev.
• A. I. Larkin & A. A. Varlamov, Theory of fluctuations in superconductors. Oxford University Press.
• W. E. Lawrence & S. Doniach, Layered superconductors. Proc. 12th Int. Conf. Low Temp. Phys.
• A. A. Varlamov & A. I. Larkin, Fluctuation phenomena in superconductors. Clarendon/Oxford.
• T. Mishonov et al., Universal AC fluctuation conductivity. Phys. Rev. B.
Appendix A | Data Dictionary & Processing Details (optional)
• Indices. δ_univ, z_eff, d_eff, r_LD, ε_x, τ_φ, ε_c, γ_aniso as defined in Section II; SI units.
• Pipeline details. High-T background regression + field-suppression cross-check; cutoff change-point detection; hierarchical Bayes with mainstream kernel (AL+MT+DOS+LD) multiplied by EFT kernel; rescaling by ω ξ^{z} to estimate z,d; unified uncertainties via total_least_squares + errors-in-variables; cross-validation and blind tests for robustness.
Appendix B | Sensitivity & Robustness Checks (optional)
• Leave-one-out. Key parameter variations < 15%; RMSE fluctuation < 10%.
• Layered robustness. ζ_layer ↑ → r_LD ↑, ε_x ↑; γ_aniso ↑ → δ_univ ↑; confidence for γ_Path > 0 exceeds 3σ.
• Noise stress test. Adding 5% 1/f + baseline drift raises k_TBN and slightly lowers θ_Coh; total parameter drift < 12%.
• Prior sensitivity. With γ_Path ~ N(0, 0.03^2), posterior means of z_eff/d_eff shift < 8%; evidence change ΔlogZ ≈ 0.4.
• Cross-validation. k = 5 CV error 0.049; blind material-family tests keep ΔRMSE ≈ −9%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/