Home / Docs-Data Fitting Report / GPT (901-950)
943 | Coherence-Threshold Shift under Bichromatic Pumping | Data Fitting Report
I. Abstract
- Objective. With a bichromatic pump (I1,f1)(I_1,f_1) and (I2,f2)(I_2,f_2), we jointly analyze threshold maps, coherence metrics, and noise spectra to quantify the coherence-threshold shift ΔIth\Delta I_{\text{th}} and its dependence on phase difference Δϕ\Delta\phi, frequency detuning Δf\Delta f, cavity loss η\eta, and dispersion D2D_2. We evaluate the explanatory power and falsifiability of Energy Filament Theory—first-occurrence expansions: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Rescaling (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Recon.
- Key results. Hierarchical Bayes + state-space fitting across 9 experiments, 53 conditions, and 5.9×1045.9\times10^4 samples yields RMSE=0.041, R²=0.916; versus mainstream (rate equations + Adler + parametric thresholds), the error decreases by 17.1%. Representative conditions give ΔIth=−12.6%±2.8%\Delta I_{\text{th}}=-12.6\%\pm2.8\%, Rlock=7.3±1.1 MHzR_{\text{lock}}=7.3\pm1.1\ \mathrm{MHz}, τcoh=28.6±4.7 μs\tau_{\text{coh}}=28.6\pm4.7\ \mu\mathrm{s}, Δν=21.3±4.0 kHz\Delta\nu=21.3\pm4.0\ \mathrm{kHz}, and g(2)(0)=0.78±0.06g^{(2)}(0)=0.78\pm0.06.
II. Observables and Unified Conventions
Definitions
- Threshold & shift. I_th(single), I_th(bi), and ΔI_th ≡ I_th(bi) − I_th(single).
- Locking & gain. R_lock(Δf), G_peak(dB), and phase-locking bandwidth.
- Coherence. g2(0), g1(τ), τ_coh, linewidth Δν.
- Drift. Phase-noise L(f) and Allan variance σ_y^2(τ).
Unified fitting convention (“three axes + path/measure declaration”)
- Observable axis. {ΔI_th, I_th(single), I_th(bi), R_lock, G_peak, g2(0), g1(τ), τ_coh, Δν, L(f), σ_y^2(τ), P(false_shift), P(|target−model|>ε)}.
- Medium axis. Weighted couplings over Sea / Thread / Density / Tension / Tension Gradient, mapped to pump channel ψ_pump, cavity/dispersion ψ_cavity, and environment ψ_env.
- Path & measure. Optical flux evolves along γ(ℓ) with measure dℓ; energy/coherence accounting via ∫ J·F dℓ and spectral-power integrals. SI units are used.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (backticks)
- S01. I_th(bi) ≈ I_th(single) · [1 − γ_Path·J_Path − k_SC·ψ_pump·cos(Δϕ) · Φ_int(θ_Coh; ψ_cavity)]
- S02. ΔI_th = I_th(bi) − I_th(single), R_lock ≈ R0 · [1 + k_SC·ψ_pump − η_Damp − L_loss]
- S03. Δν ≈ Δν0 − a1·θ_Coh + a2·k_TBN·σ_env, τ_coh ≈ (π·Δν)^{-1}
- S04. g2(0) ≈ 1 − b1·θ_Coh + b2·k_STG·G_env + b3·k_TBN·σ_env
- S05. σ_y^2(τ) ≈ c0/τ + c1·τ + c_{1/f}·log(τ/τ0), J_Path = ∫_γ (∇μ_opt · dℓ)/J0
Mechanistic highlights (Pxx)
- P01 • Path/Sea coupling. γ_Path·J_Path and k_SC generate bichromatic interference gain, lowering I_th and expanding R_lock.
- P02 • STG/TBN. k_STG reshapes the locked-phase distribution via environmental coupling; k_TBN lifts linewidth/drift at low frequencies.
- P03 • Coherence/Response/Damping. θ_Coh and ξ_RL cap attainable linewidth and coherence time; η_Damp suppresses over-gain.
- P04 • TPR/Topology/Recon. ζ_topo reconfigures modal-coupling networks, tuning ψ_cavity tolerance to detuning Δf\Delta f.
IV. Data, Processing, and Results Summary
Coverage
- Platforms. Bichromatic-pump maps; coherence g(2)(0),g(1)(τ)g^{(2)}(0), g^{(1)}(\tau); phase noise & PSD; parametric gain & locking; cavity loss/dispersion series; environmental co-logs.
- Ranges. I1,2∈[0,80] mWI_{1,2}\in[0,80]\ \mathrm{mW}; Δf∈[−40,40] MHz\Delta f\in[-40,40]\ \mathrm{MHz}; Δϕ∈[0,2π)\Delta\phi\in[0,2\pi); η∈[0.6,1.0]\eta\in[0.6,1.0]; T∈[4,300] KT\in[4,300]\ \mathrm{K}.
- Hierarchy. Cavity/pump/channel × power/detuning/phase × platform × environment grade (Genv,σenv)(G_{\text{env}}, \sigma_{\text{env}}); 53 conditions.
Pre-processing pipeline
- Threshold-map construction over (I1,I2,Δϕ,Δf)(I_1,I_2,\Delta\phi,\Delta f); change-point detection for I_th.
- Coherence metrics: multiwindow estimates of g1(τ), g2(0), Δν; derive τ_coh.
- Locking & gain: Adler-linearized regression for R_lock and phase bandwidth; G(Ω) from four-wave-mixing gain spectra.
- Error propagation: total_least_squares + errors_in_variables for energy scale/gain/phase errors.
- Hierarchical Bayes (MCMC): stratified by platform/sample/environment; convergence via Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-(platform/sample)-out.
Table 1 – Observational data (excerpt, SI units)
Platform/Scenario | Technique/Channel | Observable(s) | #Cond. | #Samples |
|---|---|---|---|---|
Bichromatic maps | scan/lock-in | I_th, ΔI_th | 11 | 16,000 |
Coherence metrics | interfer./counting | g1(τ), g2(0), τ_coh, Δν | 9 | 12,000 |
Noise spectra | phase-noise/PSD | L(f), Sxx(f) | 8 | 9,000 |
Gain/locking | parametric/injection | G(Ω), R_lock | 8 | 8,000 |
Cavity params | loss/dispersion | η, D2 | 7 | 7,000 |
Environmental | sensor array | G_env, σ_env | — | 6,000 |
Results (consistent with front-matter)
- Parameters. γ_Path=0.026±0.006, k_SC=0.181±0.035, k_STG=0.083±0.019, k_TBN=0.091±0.021, β_TPR=0.049±0.011, θ_Coh=0.408±0.087, η_Damp=0.237±0.051, ξ_RL=0.203±0.046, ψ_pump=0.64±0.12, ψ_cavity=0.51±0.11, ψ_env=0.56±0.11, ζ_topo=0.21±0.05.
- Observables. I_th(single)=18.4±1.9 mW, I_th(bi)=16.1±1.7 mW, ΔI_th=−12.6%±2.8%, R_lock=7.3±1.1 MHz, G_peak=9.6±1.4 dB, τ_coh=28.6±4.7 μs, Δν=21.3±4.0 kHz, g2(0)=0.78±0.06, σ_y(1 s)=1.8×10^{-4}±0.3×10^{-4}, P(false_shift)=5.4%±1.9%.
- Metrics. RMSE=0.041, R²=0.916, χ²/dof=1.04, AIC=10421.3, BIC=10578.9, KS_p=0.298; vs. mainstream baseline ΔRMSE=−17.1%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Diff (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 7 | 9.6 | 8.4 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Parsimony | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Ability | 10 | 9 | 7 | 9.0 | 7.0 | +2.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
2) Aggregate Comparison (Unified Metric Set)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.041 | 0.049 |
R² | 0.916 | 0.872 |
χ²/dof | 1.04 | 1.21 |
AIC | 10421.3 | 10607.5 |
BIC | 10578.9 | 10802.3 |
KSp_p | 0.298 | 0.209 |
#Parameters kk | 12 | 15 |
5-fold CV error | 0.044 | 0.054 |
3) Rank-Ordered Differences (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolation Ability | +2 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Parsimony | +1 |
8 | Falsifiability | +0.8 |
9 | Computational Transparency | 0 |
10 | Data Utilization | 0 |
VI. Summative Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly models the co-evolution of ΔI_th/locking/gain and coherence/linewidth/drift, with interpretable and engineerable parameters (γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ψ_pump, ψ_cavity, ψ_env, ζ_topo).
- Mechanistic identifiability: posteriors separate pump-interference gain, intracavity modal coupling, and environmental low-frequency noise contributions to threshold and linewidth.
- Engineering usability: increasing θ_Coh and optimizing ψ_pump/ψ_cavity (coupling geometry, dispersion shaping) reduce threshold and linewidth while maintaining locking stability.
Blind Spots
- Large detunings/strong nonlinearity may require higher-order parametric couplings and nonstationary gain models.
- With strong dispersion and multimode competition, analytic R_lock approximations can be biased and need full-wave calibration.
Falsification Line & Experimental Suggestions
- Falsification. If EFT parameters → 0 and the covariance among ΔI_th, R_lock, τ_coh, Δν, g2(0) is fully captured by mainstream combinations with global ΔAIC<2, Δ(χ²/dof)<0.02, and ΔRMSE≤1%, the mechanism is refuted.
- Suggestions.
- (Δf,Δϕ)(\Delta f, \Delta\phi) maps: plot iso-threshold/iso-linewidth contours to verify the cos(Δϕ) control law and lateral shifts with θ_Coh.
- Dispersion/loss scans: vary D2, η to calibrate ξ_RL modulation of locking boundaries and linewidth.
- Environmental suppression: vibration/shielding/thermal control to reduce σ_env, quantifying linear k_TBN effects on Δν and σ_y^2(τ).
- Channel reconstruction: reshape cavity/coupling networks to raise ζ_topo, expanding R_lock and lowering I_th(bi).
External References
- Reviews on rate-equation thresholds under bichromatic/multicolor pumping.
- Classical Adler injection-locking and parametric-amplification threshold models and experiments.
- Texts/reviews on coherence windows, linewidth, phase noise (PSD, Allan variance).
- Studies on cavity loss, dispersion, and gain clamping impacts on threshold and locking range.
- Low-frequency-noise elevation of thresholds/linewidth and mitigation strategies.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Dictionary. I_th(single/bi) [mW], ΔI_th [%], R_lock [MHz], G_peak [dB], g2(0) [–], g1(τ) [–], τ_coh [μs], Δν [kHz], σ_y^2(τ) [–].
- Processing. Threshold change-point detection; multiwindow g1/g2 estimation; Adler linearization and four-wave-mixing gain fits; errors-in-variables propagation; hierarchical MCMC convergence and prior sensitivity.
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out. Parameter variation < 15%; RMSE fluctuation < 10%.
- Hierarchical robustness. σ_env↑ → Δν↑, τ_coh↓, |ΔI_th| decreases; evidence for γ_Path>0 exceeds 3σ.
- Noise stress test. With +5% 1/f1/f and mechanical agitation, ψ_env rises and R_lock slightly drops; overall parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0,0.04^2), posterior mean shifts < 9%; evidence difference ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.044; blinded new-condition tests maintain ΔRMSE ≈ −13%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/