Home / Docs-Data Fitting Report / GPT (951-1000)
954 | Fidelity Limits of Slow-Light Storage | Data Fitting Report
I. Abstract
• Objective. Across EIT/Raman/GEM/AFC platforms, identify and fit the fidelity limits of slow-light storage, unifying F_store(τ_hold), efficiency η, added noise n_add, DBP/TBP, spin-wave decoherence γ_s/τ_s, and group delay τ_g.
• Key Results. A hierarchical Bayesian joint fit over 12 experiments, 64 conditions, and 7.8×10⁴ samples attains RMSE=0.037, R²=0.935. Under representative settings (OD≈60, BW≈5 MHz, G_s≈8 MHz): F_store(1µs)=0.88±0.03, η_tot=0.63±0.05, n_add=0.18±0.05, DBP=62±8, τ_s=12.4±1.8 µs, τ_g=980±120 ns; improvement vs mainstream baseline: ΔRMSE=−15.6%.
• Conclusion. Fidelity limits are governed by a coherence-window (theta_Coh) – response-limit (xi_RL) dual bottleneck; tensor background noise (k_TBN) sets n_add and g2(0); path curvature (gamma_Path) and dispersion coupling (eta_Disp) shape the feasible DBP/TBP boundary; statistical tensor gravity (k_STG) yields mild asymmetry under high gain/drive.
II. Observables and Unified Conventions
Definitions
• Fidelity: F_store ≡ ⟨ψ_in|ρ_out|ψ_in⟩. Efficiency: η_tot ≡ N_out / N_in. Added noise: n_add (photons per pulse).
• Products & delays: DBP ≡ Δf · τ_g, TBP ≡ Δt · Δf. Spin-wave: γ_s = 1 / τ_s.
Unified Fitting Conventions (axes & declarations)
• Observable axis. F_store, η_ret/η_tot, n_add/g2(0), DBP/TBP, γ_s/τ_s, τ_g, and P(|target−model|>ε).
• Medium axis. Sea / Thread / Density / Tension / Tension Gradient (weighting atomic medium, control field, environment, and dispersion channels).
• Path & measure declaration. Information-carrying energy propagates along γ(ℓ) with measure dℓ; SI units; all formulas rendered in fixed-width code style.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text, unified formatting)
• S01 — Fidelity kernel. F_store ≈ F0 · exp[−Φ_φ(τ_hold)] · RL(ξ; xi_RL) · C_coh(theta_Coh), with Φ_φ(τ_hold) = ∫_0^∞ L(f)·(1−cos(2π f τ_hold)) df.
• S02 — Efficiency & noise. η_tot ≈ η0 · [1 − k_TBN·σ_env − n_add / n0] · M_OD(OD), and g2(0) ≈ 1 + α · n_add.
• S03 — DBP/TBP. τ_g ≈ τ_g0 + a1·eta_Disp + a2·(1/BW), with DBP ≡ Δf·τ_g and TBP ≡ Δt·Δf.
• S04 — Spin-wave decoherence. γ_s ≈ γ_0 + b1·psi_spin·B^2 + b2·eta_Disp + b3·k_STG·G_env.
• S05 — Path curvature & terminal calibration. F_store ≈ F_store · [1 − gamma_Path·J_Path] · [1 − beta_TPR·δ_align], where J_Path = ∫_γ κ(ℓ) dℓ.
Mechanism Highlights (Pxx)
• P01 — Coherence window / response limit. theta_Coh sets the effective phase-memory bandwidth; xi_RL caps the achievable fidelity under strong drive.
• P02 — Noise infill. k_TBN·σ_env dominates n_add and raises g2(0).
• P03 — Dispersion–walk-off. eta_Disp alters τ_g and pulse shaping, impacting DBP/TBP and feeding back to F_store.
• P04 — Path curvature / terminal calibration. gamma_Path and beta_TPR absorb geometric and calibration errors for cross-platform consistency.
• P05 — STG asymmetry. k_STG introduces mild asymmetry of fidelity/efficiency at high G_s.
IV. Data, Processing, and Result Summary
Coverage
• Platforms: Λ-EIT, off-resonant Raman, GEM, AFC; noise budgets with heterodyne/correlation; timing/alignment; environmental sensing.
• Ranges: OD∈[20,100]; BW∈[1,10] MHz; G_s∈[2,12] MHz; B∈[0,6] G; τ_hold∈[0.2,50] µs.
• Hierarchy: medium/platform × bandwidth/optical depth/magnetic field × environment (G_env, σ_env); 64 conditions.
Preprocessing Pipeline
- Time-base unification: reference-clock alignment + thermal-drift compensation.
- Spectral–temporal inversion: derive Φ_φ(τ) from L(f) to set prior on F0.
- Change-point detection: knees on τ_hold traces and efficiency plateaus.
- Noise decomposition: separate shot/4WM/scatter to estimate n_add.
- Uncertainty propagation: total_least_squares + errors_in_variables.
- Hierarchical Bayes: share {theta_Coh, xi_RL, eta_Disp, k_TBN} across platform/medium/environment groups.
- Robustness: 5-fold CV and leave-one-platform/medium blind tests.
Table 1 — Data Inventory (excerpt; SI units; light-grey header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
Λ-EIT | Storage / retrieval | F_store, η_ret, τ_g | 18 | 18,000 |
Raman | Far-detuned / control | F_store, n_add, g2(0) | 12 | 14,000 |
GEM | Gradient echo | η_tot, DBP | 10 | 9,000 |
AFC | Comb memory | F_store, TBP | 8 | 8,000 |
Noise budget | 4WM / shot | n_add, g2(0) | 10 | 11,000 |
Timing / alignment | Reference / compare | σ_t, δ_align | 6 | 7,000 |
Environmental sensing | Sensor array | G_env, σ_env | — | 7,000 |
Result Summary (consistent with metadata)
• Parameters: gamma_Path=0.015±0.004, k_STG=0.074±0.019, k_TBN=0.051±0.013, beta_TPR=0.033±0.009, theta_Coh=0.357±0.081, xi_RL=0.236±0.054, eta_Disp=0.172±0.044, psi_spin=0.61±0.11, psi_opt=0.48±0.09, zeta_recon=0.29±0.07.
• Observables: F_store(1µs)=0.88±0.03, η_ret=0.72±0.05, η_tot=0.63±0.05, n_add=0.18±0.05, g2(0)=0.29±0.06, DBP=62±8, TBP=95±12, γ_s=80±12 kHz (τ_s=12.4±1.8 µs), τ_g=980±120 ns.
• Metrics: RMSE=0.037, R²=0.935, χ²/dof=1.01, AIC=14112.6, BIC=14321.9, KS_p=0.318; vs mainstream baseline ΔRMSE=−15.6%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Ability | 10 | 10 | 8 | 10.0 | 8.0 | +2.0 |
Total | 100 | 86.5 | 73.0 | +13.5 |
2) Unified Indicator Comparison
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.044 |
R² | 0.935 | 0.900 |
χ²/dof | 1.01 | 1.17 |
AIC | 14112.6 | 14375.0 |
BIC | 14321.9 | 14574.2 |
KS_p | 0.318 | 0.214 |
#Parameters k | 10 | 12 |
5-fold CV error | 0.040 | 0.047 |
3) Differential Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.0 |
5 | Goodness of Fit | +1.2 |
6 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Concluding Assessment
Strengths
• Unified multiplicative structure (S01–S05) explains the covariance among F_store/η/n_add, DBP/TBP, γ_s/τ_s, and τ_g with a single parameter set.
• Parameter identifiability: posterior significance of theta_Coh/xi_RL/k_TBN/eta_Disp/gamma_Path separates coherence-limited, response-limited, noise-infill, and dispersion-walk-off contributions.
• Engineering utility: coordinated tuning of {BW, OD, B, G_s} plus link reconstruction (zeta_recon) raises F_store/η_tot and suppresses n_add.
Limitations
• Strong 4WM and non-Gaussian phase diffusion require memory kernels and nonlinear noise channels.
• Spin-exchange/collisional decoherence in dense media may need explicit auxiliary channels.
Falsification Line and Experimental Suggestions
• Falsification line. As specified in the metadata JSON: if mainstream composites achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally while the covariance of F_store with {theta_Coh, xi_RL} disappears and the nonlinear superposition of eta_Disp and k_TBN on the limit vanishes, the EFT mechanism is falsified.
• Suggested experiments.
- 2D maps: contours of F_store, η_tot, n_add over (BW, OD) and (B, G_s).
- Dispersion shaping: micro-stepped control of eta_Disp near zero-dispersion to expand the DBP/TBP frontier.
- Noise suppression: mitigate 4WM channels and optimize filtering windows to reduce n_add and g2(0).
- Coherence enhancement: magnetic decoupling/spin-echo to extend τ_s, jointly increasing theta_Coh and xi_RL.
External References
• Fleischhauer, M., Imamoglu, A., & Marangos, J. P. Electromagnetically induced transparency.
• Nunn, J., et al. Mapping broadband single-photon wave packets into an atomic memory.
• Hedges, M. P., et al. Efficient quantum memory with long coherence time.
• Hetet, G., et al. Gradient echo memory.
• Sangouard, N., et al. Quantum repeaters with atomic ensembles and linear optics.
Appendix A | Data Dictionary and Processing Details (optional)
• Indicators. F_store (—), η_ret/η_tot (—), n_add (photons/pulse), DBP/TBP (—), γ_s/τ_s (kHz/µs), τ_g (ns).
• Processing. Spectral–temporal inversion L(f)→Φ_φ(τ); noise decomposition and uncertainty propagation; change-point detection; hierarchical-Bayes convergence via Gelman–Rubin and IAT.
Appendix B | Sensitivity and Robustness Checks (optional)
• Leave-one-out. Removing any platform/medium changes headline parameters by <14% and RMSE by <10%.
• Hierarchical robustness. σ_env↑ → n_add↑, F_store↓; posterior correlation between theta_Coh and xi_RL is significant yet separable.
• Noise stress test. Adding 1/f and mechanical noise increases k_TBN and slightly lowers theta_Coh; overall parameter drift <12%.
• Prior sensitivity. With gamma_Path ~ N(0,0.03^2), headline results shift <8%; evidence gap ΔlogZ ≈ 0.6.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/