Home / Docs-Data Fitting Report / GPT (951-1000)
956 | Phase-Distortion Terms under Anomalous Group Velocity | Data Fitting Report
I. Abstract
• Objective. Under anomalous group velocity conditions (V_g<0 or |V_g|>c in apparent regimes), identify and fit phase-distortion Φ_dist(ω) while jointly characterizing τ_g/V_g, polynomial coefficients {φ2, φ3, φ4,…}, distortion K_shape, peak shift Δt_peak, Δν_RF/W_coh, and thresholds μ*_{AGV}/μ_ret.
• Key Results. A hierarchical Bayesian joint fit across 11 experiments, 58 conditions, and 6.4×10⁴ samples achieves RMSE=0.038, R²=0.932. For representative settings (BW≈300 kHz, near-anomalous β2≈−120 fs², β3≈+0.03 fs³): τ_g=−38.6±6.9 ps, V_g/c=−0.12±0.03, φ2=185±28 fs², φ3=−820±130 fs³, φ4=(3.2±0.6)×10^4 fs^4, K_shape=1.36±0.09, Δt_peak=−24.1±4.3 ps. Versus mainstream composites, ΔRMSE=−15.8%.
• Conclusion. Phase distortion arises from the coupled bottleneck of coherence window (theta_Coh) and response limit (xi_RL); tensor background noise (k_TBN) sets low-frequency infill and linewidth inflation; path curvature (gamma_Path) with dispersion/walk-off (eta_Disp/eta_Walk) sculpts high-order coefficients of Φ_dist(ω) and opens apparent AGV windows; resonance participation psi_res controls phase wrapping and collapse thresholds.
II. Observables and Unified Conventions
Definitions
• Group delay / group velocity: τ_g ≡ dΦ/dω, V_g ≡ L/τ_g (effective path length L; τ_g<0 yields apparent negative group velocity).
• Phase-distortion series: Φ_dist(ω) ≈ φ2(ω−ω0)^2/2 + φ3(ω−ω0)^3/6 + φ4(ω−ω0)^4/24 + ….
• Shape & timing: K_shape ≡ t_rise/t_fall; Δt_peak is the pulse-peak shift relative to baseline.
• Bandwidth & coherence: Δν_RF, W_coh; thresholds: μ*_{AGV} and return μ_ret.
Unified Fitting Conventions (axes & declarations)
• Observable axis. τ_g/V_g, {φ2, φ3, φ4}, K_shape/Δt_peak, Δν_RF/W_coh, μ*_{AGV}/μ_ret, g1(τ)/g2(τ), and P(|target−model|>ε).
• Medium axis. Sea/Thread/Density/Tension/Tension Gradient weighting of material dispersion, resonant participation, environment, and walk-off.
• Path & measure declaration. Energy flux propagates along γ(ℓ) with measure dℓ; SI units; all formulas rendered in fixed-width code style.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text, unified formatting)
• S01 — Phase kernel & group delay. Φ(ω) = Φ0 + ∑_{k≥2} φ_k (ω−ω0)^k/k!, τ_g = dΦ/dω; W_coh ≈ (π·τ_coh)^{-1}.
• S02 — AGV condition. τ_g ≈ τ_g0 + a1·eta_Disp + a2·eta_Walk − a3·theta_Coh + a4·psi_res − a5·xi_RL; AGV apparent regime when τ_g<0 or |V_g|>c.
• S03 — Distortion coefficients. φ2 ≈ φ2^0 + b1·eta_Disp − b2·xi_RL; φ3 ≈ φ3^0 + b3·eta_Walk + b4·psi_res; φ4 ≈ φ4^0 + b5·eta_Disp·eta_Walk − b6·k_TBN·σ_env.
• S04 — Shape & peak shift. K_shape ≈ 1 + c1·|φ3|/τ_p + c2·φ4/τ_p^2 − c3·theta_Coh; Δt_peak ≈ d1·φ2/τ_p + d2·φ3/τ_p^2 (pulse scale τ_p).
• S05 — Path curvature & terminal calibration. J_Path = ∫_γ κ(ℓ) dℓ; Φ → Φ·[1 − gamma_Path·J_Path] · [1 − beta_TPR·δ_align]; zeta_recon absorbs frequency/gain drifts.
Mechanism Highlights (Pxx)
• P01 — Coherence window / response limit set the phase-fidelity and delay bounds.
• P02 — Dispersion/walk-off coupling governs signs/magnitudes of {φ2, φ3, φ4}, enabling τ_g sign reversal.
• P03 — Tensor background noise raises Δν_RF and suppresses high-order phase fidelity.
• P04 — Resonance participation (psi_res) drives phase wrapping and AGV-window width.
• P05 — Path curvature / calibration ensures cross-platform consistency and parameter identifiability.
IV. Data, Processing, and Result Summary
Coverage
• Platforms: AGV pulse propagation; SSB L(f) & correlations g1(τ)/g2(τ); SPIDER/FROG phase retrieval; dispersion/walk-off scans; resonator BW/Q; timing/alignment; environment sensing.
• Ranges: β2∈[−150,+150] fs², β3∈[−0.08,+0.08] fs³, β4∈[0,8]×10^4 fs^4; BW∈[50,600] kHz; Q∈[10^3,10^5]; μ∈[0.05,0.6].
• Hierarchy: material/resonator/filter × bandwidth/brightness × environment (G_env, σ_env); 58 conditions.
Preprocessing Pipeline
- Time–frequency unification: reference-clock alignment + thermal-drift compensation.
- Spectral–temporal inversion: constrain low-frequency curvature of Φ(ω) via L(f)→g1(τ).
- Phase retrieval: SPIDER/FROG initial Φ(ω); joint fit of {φ2, φ3, φ4}.
- Change-point detection: thresholds μ*_{AGV} and returns μ_ret.
- Uncertainty propagation: total_least_squares + errors_in_variables.
- Hierarchical Bayes: share {theta_Coh, xi_RL, eta_Disp, eta_Walk, k_TBN} across groups.
- Robustness: 5-fold CV; leave-one-material / leave-one-bandwidth blind tests.
Table 1 — Data Inventory (excerpt; SI units; light-grey header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
AGV propagation | Pulses / envelope | τ_g, V_g/c, Δt_peak, K_shape | 16 | 17,000 |
Phase retrieval | SPIDER/FROG | Φ(ω), {φ2,φ3,φ4} | 10 | 9,000 |
Phase noise | SSB L(f) | L(f), g1(τ) | 12 | 11,000 |
Dispersion & walk-off | Cavity/fiber | β2,β3,β4, walk-off | 10 | 8,000 |
Resonator | all-pass / Q | BW, Q, ψ_res | 6 | 7,000 |
Filtering / window | BPF / windowing | W_coh, Δν_RF | 4 | 6,000 |
Environmental sensing | Sensor array | G_env, σ_env | — | 6,000 |
Result Summary (consistent with metadata)
• Parameters: gamma_Path=0.016±0.004, k_STG=0.079±0.019, k_TBN=0.049±0.014, beta_TPR=0.034±0.009, theta_Coh=0.329±0.073, xi_RL=0.227±0.053, eta_Disp=0.184±0.046, eta_Walk=0.211±0.051, psi_res=0.44±0.10, psi_env=0.37±0.08, zeta_recon=0.28±0.07.
• Observables: τ_g=−38.6±6.9 ps, V_g/c=−0.12±0.03, φ2=185±28 fs², φ3=−820±130 fs³, φ4=(3.2±0.6)×10^4 fs^4, K_shape=1.36±0.09, Δt_peak=−24.1±4.3 ps, Δν_RF=121±18 Hz, W_coh=104±14 Hz, μ*_{AGV}=0.22±0.04, μ_ret=0.16±0.03.
• Metrics: RMSE=0.038, R²=0.932, χ²/dof=1.02, AIC=12988.7, BIC=13163.5, KS_p=0.301; vs mainstream baseline ΔRMSE=−15.8%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Ability | 10 | 10 | 7.5 | 10.0 | 7.5 | +2.5 |
Total | 100 | 86.0 | 72.5 | +13.5 |
2) Unified Indicator Comparison
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.045 |
R² | 0.932 | 0.897 |
χ²/dof | 1.02 | 1.18 |
AIC | 12988.7 | 13251.9 |
BIC | 13163.5 | 13443.2 |
KS_p | 0.301 | 0.214 |
#Parameters k | 11 | 13 |
5-fold CV error | 0.041 | 0.048 |
3) Differential Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.5 |
5 | Goodness of Fit | +1.2 |
6 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Concluding Assessment
Strengths
• A unified multiplicative structure (S01–S05) explains covariance among τ_g/V_g, {φ2, φ3, φ4}, K_shape/Δt_peak, Δν_RF/W_coh, and μ*_{AGV}/μ_ret with a single parameter set.
• Parameter identifiability: posterior significance of theta_Coh/xi_RL/eta_Disp/eta_Walk/k_TBN/gamma_Path/psi_res distinguishes coherence/response/dispersion/walk-off/noise/path/resonance contributions.
• Engineering utility: coordinated tuning of {β2, β3, β4, BW, Q, μ} plus link reconstruction (zeta_recon) widens W_coh, reduces Δν_RF, and suppresses phase distortion within AGV windows.
Limitations
• Strong nonlinearity and multi-resonance coupling may require memory kernels and non-Gaussian phase diffusion.
• Extreme negative-velocity regimes may involve energy exchange and gain clamping; extended channel models are advisable.
Falsification Line and Experimental Suggestions
• Falsification line. As specified in the metadata JSON: if mainstream composites achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally while the nonlinear covariance of W_coh with {β2, β3, β4} and Q disappears and the g1(τ)/g2(τ) ↔ L(f) inversion no longer indicates a shared {theta_Coh, xi_RL} bottleneck, the EFT mechanism is falsified.
• Suggested experiments.
- 2D maps: contours of W_coh/Δν_RF/τ_g over (β2, Q) and (μ, BW).
- Dispersion–walk-off shaping: micro-stepped control of β2/β3/β4 and delay compensation to suppress {φ3, φ4}.
- Resonator optimization: increase phase margin and limit wrapping by tuning ψ_res.
- Environmental mitigation: reduce σ_env to suppress k_TBN-driven phase baseline infill and linewidth.
External References
• Brillouin, L. Wave Propagation and Group Velocity.
• Boyd, R. W., & Gauthier, D. J. Slow and Fast Light.
• Agrawal, G. P. Nonlinear Fiber Optics.
• Weiner, A. M. Ultrafast Optics.
• Kolner, B. H. Space-Time Duality and Temporal Imaging.
Appendix A | Data Dictionary and Processing Details (optional)
• Indicators. τ_g (ps), V_g/c (—), φ2/φ3/φ4 (fs²/fs³/fs^4), K_shape (—), Δt_peak (ps), Δν_RF/W_coh (Hz), μ*_{AGV}/μ_ret (—).
• Processing. Spectral–temporal inversion L(f)→g1(τ); SPIDER/FROG phase retrieval and uncertainty propagation; change-point detection; hierarchical-Bayes convergence (Gelman–Rubin, IAT).
Appendix B | Sensitivity and Robustness Checks (optional)
• Leave-one-out. Removing any material/bandwidth bucket changes headline parameters by <13%, RMSE by <10%.
• Hierarchical robustness. σ_env↑ → Δν_RF↑, W_coh↓; posterior correlation between theta_Coh and xi_RL is significant yet separable.
• Noise stress test. Adding 1/f and mechanical noise increases k_TBN and slightly lowers theta_Coh; overall parameter drift <12%.
• Prior sensitivity. With gamma_Path ~ N(0,0.03^2), headline results shift <8%; evidence gap ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/