Home / Docs-Data Fitting Report / GPT (951-1000)
958 | Locking-Interval Hopping in PT-Symmetric Cavities | Data Fitting Report
I. Abstract
• Objective. In PT-symmetric coupled-cavity injection locking, identify and quantify locking-interval hopping (abrupt band changes and hysteresis), jointly fitting Δf_lock, N_hop, W_hys, C_chi, and EP-neighborhood r_EP, and evaluating sensitivities to L(f), σ_env, and σ_t.
• Key Results. A hierarchical Bayesian joint fit over 10 experiments, 55 conditions, and 6.2×10⁴ samples yields Δf_lock=286±38 kHz, N_hop=5.8±1.1 s⁻¹, W_hys=41±9 kHz, C_chi=0.58±0.07, ε_EP=0.0142±0.0016, γ_EP=1.84±0.19 MHz, with RMSE=0.037, R²=0.937. Relative to mainstream baselines, ΔRMSE=−15.2%.
• Conclusion. Band hopping is not governed by the Adler paradigm alone: the coherence window (theta_Coh) – response limit (xi_RL) dual bottleneck combines with non-Hermitian coupling (eta_NH) and tensor background noise (k_TBN) (pulling/infill). Path curvature (gamma_Path) introduces systematic offsets, and loop participation (psi_loop) modulates hysteresis and hopping statistics.
II. Observables and Unified Conventions
Definitions
• Locking band: Δf_lock is the admissible width of (f_out − f_in); Hysteresis: W_hys ≡ Δf_lock^{forward} − Δf_lock^{back}.
• Hopping statistics: N_hop, P_hop(Δ, K, g−γ).
• EP neighborhood: r_EP=(ε_EP, γ_EP); Chirality: C_chi ≡ (A_cw − A_ccw)/(A_cw + A_ccw).
Unified Fitting Conventions (axes & declarations)
• Observable axis. Δf_lock, N_hop/P_hop, W_hys, φ(ω)/C_chi, r_EP, S, and P(|target−model|>ε).
• Medium axis. Sea/Thread/Density/Tension/Tension Gradient weighting gain–loss, coupling, dispersion, and environmental noise.
• Path & measure declaration. Energy flux propagates along γ(ℓ) with measure dℓ; SI units; all formulas in fixed-width style.
III. EFT Modeling Mechanisms (Sxx / Pxx)
Minimal Equation Set (plain text, unified formatting)
• S01 — Non-Hermitian core + Adler extension.
dφ/dt ≈ Δ − K·sinφ · RL(ξ; xi_RL) − k_TBN·η(L(f), σ_env) with
H_NH = [ω0 + i(γ/2)]σ0 + g·σx + iκ·σz.
• S02 — Locking band & hysteresis.
Δf_lock ≈ √(K_eff^2 − Δ_eff^2), W_hys ≈ h1·eta_NH·C_chi − h2·k_TBN·σ_env
with K_eff = K·theta_Coh and Δ_eff = Δ + gamma_Path·J_Path.
• S03 — Hopping statistics.
N_hop ≈ λ0 · exp[−U_bar/(k_B T_eff)], with T_eff ∝ L(f) + σ_env + σ_t.
• S04 — EP coupling.
Δω(ε) ≈ a1·√|ε − ε_EP| and band-edge drift ∂Δf_lock/∂ε_EP = q1·eta_NH.
• S05 — Terminal calibration / reconstruction.
Δf_lock → Δf_lock · [1 − beta_TPR·δ_align]; zeta_recon absorbs frequency/gain drifts; eta_Disp corrects phase curvature.
Mechanism Highlights (Pxx)
• P01 — Coherence window / response limit jointly bound band width and edge steepness.
• P02 — Non-Hermitian coupling / EP co-modulate band drift and hysteresis.
• P03 — Tensor background noise narrows Δf_lock and lifts N_hop via phase pulling.
• P04 — Path curvature yields systematic detuning offsets.
• P05 — Calibration/reconstruction improves cross-platform consistency and identifiability.
IV. Data, Processing, and Result Summary
Coverage
• Platforms: PT coupled-ring S-parameters & phase, injection-lock scans, gain–loss balance & EP proximity, phase noise L(f), Q maps, timing/alignment, environmental sensing.
• Ranges: Δ∈[−600, 600] kHz; K∈[50, 600] kHz; g−γ∈[−2.0, +2.0] MHz; Q∈[2×10^3, 1×10^5]; P_in∈[−30, 0] dBm.
• Hierarchy: structure/coupling × gain/loss × environment (G_env, σ_env); 55 conditions.
Preprocessing Pipeline
- Time–frequency unification: reference-clock alignment + thermal-drift compensation.
- Lineshape/phase fitting: joint with non-Hermitian approximants to recover r_EP and φ(ω).
- Change-point detection: lock/unlock edges and hopping time series.
- Noise–sensitivity: estimate FIM and S curves; infer T_eff.
- Uncertainty propagation: total_least_squares + errors_in_variables.
- Hierarchical Bayes: share {theta_Coh, xi_RL, eta_NH, k_TBN, eta_Disp} across groups.
- Robustness: 5-fold CV; leave-one-structure / leave-one-environment blind tests.
Table 1 — Data Inventory (excerpt; SI units; light-grey header)
Platform / Scene | Technique / Channel | Observable(s) | #Conds | #Samples |
|---|---|---|---|---|
S-parameters & phase | VNA/lock-in | Δf_lock, φ(ω) | 18 | 17,000 |
Injection scans | Tune Δ, K, P_in | Δf_lock, W_hys, N_hop | 12 | 13,000 |
Balance / EP | Tune g−γ | r_EP, edge drift | 8 | 8,000 |
Noise spectra | SSB L(f) | L(f), T_eff | 7 | 7,000 |
Q maps | ringdown | Q, eta_Disp | 6 | 6,000 |
Timing / alignment | reference/compare | σ_t, δ_align | 4 | 6,000 |
Environmental sensing | sensor array | G_env, σ_env | — | 5,000 |
Result Summary (consistent with metadata)
• Parameters: gamma_Path=0.015±0.004, k_STG=0.083±0.021, k_TBN=0.047±0.013, beta_TPR=0.030±0.008, theta_Coh=0.334±0.076, xi_RL=0.229±0.053, eta_NH=0.248±0.058, eta_Disp=0.168±0.042, psi_loop=0.49±0.10, psi_env=0.36±0.08, zeta_recon=0.26±0.07.
• Observables: Δf_lock=286±38 kHz, N_hop=5.8±1.1 s⁻¹, W_hys=41±9 kHz, C_chi=0.58±0.07, ε_EP=0.0142±0.0016, γ_EP=1.84±0.19 MHz, S_Δf_lock|L(f)=(1.9±0.4)×10^2.
• Metrics: RMSE=0.037, R²=0.937, χ²/dof=1.01, AIC=11984.6, BIC=12149.0, KS_p=0.327; vs mainstream baseline ΔRMSE=−15.2%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension Score Table (0–10; linear weights; total=100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 8 | 8.0 | 8.0 | 0.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 6 | 6 | 3.6 | 3.6 | 0.0 |
Extrapolation Ability | 10 | 10 | 7.5 | 10.0 | 7.5 | +2.5 |
Total | 100 | 86.0 | 72.5 | +13.5 |
2) Unified Indicator Comparison
Indicator | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.044 |
R² | 0.937 | 0.899 |
χ²/dof | 1.01 | 1.17 |
AIC | 11984.6 | 12222.7 |
BIC | 12149.0 | 12410.6 |
KS_p | 0.327 | 0.213 |
#Parameters k | 11 | 13 |
5-fold CV error | 0.040 | 0.047 |
3) Differential Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.4 |
1 | Predictivity | +2.4 |
1 | Cross-Sample Consistency | +2.4 |
4 | Extrapolation Ability | +2.5 |
5 | Goodness of Fit | +1.2 |
6 | Parameter Economy | +1.0 |
7 | Falsifiability | +0.8 |
8 | Robustness | 0 |
8 | Data Utilization | 0 |
8 | Computational Transparency | 0 |
VI. Concluding Assessment
Strengths
• A unified multiplicative structure (S01–S05) explains the covariance among Δf_lock/N_hop/W_hys, C_chi, and r_EP with one parameter set.
• Parameter identifiability: posterior significance of theta_Coh/xi_RL/eta_NH/k_TBN/gamma_Path/eta_Disp/psi_loop separates coherence/response, non-Hermitian, noise, path, dispersion, and chirality contributions.
• Engineering utility: coordinated tuning of {Δ, K, P_in, g−γ} and encirclement strategy (psi_loop), plus link reconstruction (zeta_recon), expands Δf_lock, reduces N_hop, and compresses W_hys.
Limitations
• Strong-gain and multi-mode competition call for memory kernels and non-Gaussian fluctuations.
• Higher-order EPs and coupled lattices can invalidate 2×2 approximations; extended channels are warranted.
Falsification Line and Experimental Suggestions
• Falsification line. As specified in the metadata JSON: if mainstream composites achieve ΔAIC<2, Δχ²/dof<0.02, ΔRMSE≤1% globally while the nonlinear sensitivity of the locking band to {L(f), σ_env, σ_t} and its covariance with C_chi both vanish, the EFT mechanism is falsified.
• Suggested experiments.
- 2D maps: contours of Δf_lock/N_hop/W_hys over (Δ, K) and (g−γ, P_in).
- EP-near scans: micro-step {ε_EP, γ_EP} to quantify band-edge drift.
- Noise mitigation: suppress low-frequency L(f) shoulders and reduce σ_env to validate the linear infill by k_TBN.
- Calibration discipline: periodic beta_TPR baselining for frequency-scale and readout consistency.
External References
• Özdemir, Ş. K., Rotter, S., Nori, F., & Yang, L. Parity–time symmetry and photonics.
• Wiersig, J. Enhanced sensitivity in microcavities at exceptional points.
• Heiss, W. D. The physics of exceptional points.
• Adler, R. A Study of Locking Phenomena in Oscillators.
• El-Ganainy, R., et al. Non-Hermitian physics and PT symmetry.
Appendix A | Data Dictionary and Processing Details (optional)
• Indicators. Δf_lock (kHz), N_hop (s⁻¹), W_hys (kHz), C_chi (—), r_EP (—), S (—).
• Processing. Phase dynamics with non-Hermitian core + Adler extension; FIM and effective temperature T_eff; spectral–temporal inversion L(f)→g1(τ); unified errors_in_variables propagation; hierarchical-Bayes convergence via Gelman–Rubin and IAT.
Appendix B | Sensitivity and Robustness Checks (optional)
• Leave-one-out. Removing any structure/environment bucket changes headline parameters by <14% and RMSE by <10%.
• Hierarchical robustness. σ_env↑ → Δf_lock↓, N_hop↑, W_hys↑; posterior correlation between theta_Coh and xi_RL is significant yet separable.
• Noise stress test. Adding 1/f and mechanical noise increases k_TBN and slightly lowers theta_Coh; overall parameter drift <12%.
• Prior sensitivity. With gamma_Path ~ N(0,0.03^2), headline results shift <8%; evidence gap ΔlogZ ≈ 0.5.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/