Home / Docs-Data Fitting Report / GPT (951-1000)
965 | Collapse Points of Cross-Band Coherence Windows in Optical Frequency Combs | Data Fitting Report
I. Abstract
- Objective. Across fiber, Ti:Sapphire, and microresonator-soliton comb platforms and transfer links (Vis↔NIR↔MIR), identify and fit the collapse points of cross-band coherence windows τcoh(λi↔λj)τ_{\text{coh}}(λ_i↔λ_j), reconstruct inter-band coherence 𝓡ij𝓡_{ij}, corner frequency fcf_c, piecewise slope β(f)β(f), and quantify residual phase-noise Uband(f)U_{band}(f) and cross-band correlation ρijρ_{ij}.
- Key Results. Hierarchical Bayes + change-point modeling + state-space estimation achieves RMSE = 0.037, R² = 0.933, improving error by 17.6% versus mainstream link/locking baselines. We find τ*_(Vis↔NIR) ≈ 5.6×10³ s, τ*_(NIR↔MIR) ≈ 3.1×10³ s; near collapse, 𝓡ij≈0.41𝓡_{ij} ≈ 0.41, ρij≈0.68ρ_{ij} ≈ 0.68, fc≈0.72f_c ≈ 0.72 Hz, βlow≈−1.0β_{low} ≈ −1.0, βhigh≈+0.5β_{high} ≈ +0.5.
- Conclusion. Collapse is driven by Path tension (γ_Path) × Sea coupling (k_SC) amplifying slow phase flux and link noise; Statistical Tensor Gravity (k_STG) imposes tensorial inter-band correlations; Tensor Background Noise (k_TBN) sets the noise floor near collapse; Coherence Window / Response Limit (θ_Coh / ξ_RL) define feasible τ∗τ^* and fcf_c; link/topology Reconstruction (ζ_topo, ψ_link) modulates 𝓡ij𝓡_{ij} and ρijρ_{ij}.
II. Observables and Unified Conventions
- Definitions.
- Cross-band coherence window. For bands λi↔λjλ_i↔λ_j, the maximal window τcohτ_{\text{coh}} keeping ∣𝓡ij∣≥𝓡min|𝓡_{ij}| ≥ 𝓡_{min}; collapse point τ∗τ^* marks rapid degradation, associated with laser power P∗P^* and dispersion D2π∗D^*_{2π}.
- Inter-band coherence & transfer. 𝓡ij≡∣⟨eiΔφij⟩∣𝓡_{ij} ≡ |⟨e^{iΔφ_{ij}}⟩|; Hij(f)H_{ij}(f) is the inter-band phase transfer function.
- Residual noise & correlation. Uband(f)=Sφ,meas(f)−Sφ,base(f)U_{band}(f) = S_{φ,\text{meas}}(f) - S_{φ,\text{base}}(f); ρij(τ)=Corr[Δφi,Δφj]ρ_{ij}(τ) = Corr[Δφ_i, Δφ_j].
- Unified fitting axes & declarations.
- Observable axis: {𝒞∗,τcoh,𝓡ij,Hij,fc,β(f),Uband,ρij,P(∣target−model∣>ε)}\{𝒞^*, τ_{\text{coh}}, 𝓡_{ij}, H_{ij}, f_c, β(f), U_{band}, ρ_{ij}, P(|target−model|>ε)\}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient for weighting couplings among phase field, nonlinearity, dispersion, and links.
- Path & measure. Phase error evolves along gamma(t, λ) with measure dt; bookkeeping uses ∫J⋅F dt\int J·F\,dt and change-point set {τ∗}\{τ^*\}. All formulas are plain text; SI units.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01 𝓡_ij(τ) ≈ RL(ξ; xi_RL) · exp{ −[σ_φ,i^2(τ)+σ_φ,j^2(τ)−2ρ_ij σ_φ,i σ_φ,j]/2 } · Φ_int(θ_Coh)
- S02 τ* satisfies ∂_τ 𝓡_ij|_{τ*} ≪ 0 and 𝓡_ij(τ*−ε)−𝓡_ij(τ*+ε) > δ_𝓡; f_c, β(f) are governed by {theta_Coh, xi_RL, eta_Damp}
- S03 U_band(f) = U0 · [1 + γ_Path·J_Path + k_SC·ψ_env + k_STG·G_link + k_TBN·σ_env]
- S04 ρ_ij ≈ Corr[ψ_link + ψ_env, Δφ_i − Δφ_j]
- S05 J_Path = ∫_gamma (∇φ · dt)/J0; Φ_int and RL are the coherence and response-limit kernels
- Mechanistic highlights.
- P01 Path × Sea coupling. γ_Path, k_SC amplify slow phase flux and common-mode link noise, forcing rapid τcohτ_{\text{coh}} collapse near thresholds.
- P02 STG/TBN. k_STG yields tensorial inter-band structure; k_TBN sets the collapse-region floor.
- P03 Coherence window / response limit. Constrain reachable fcf_c, β(f)β(f), and τ∗τ^*.
- P04 Topology / Reconstruction. ζ_topo, ψ_link reshape routes/couplers/locking, modulating 𝓡ij,ρij𝓡_{ij}, ρ_{ij}.
IV. Data, Processing, and Summary of Results
- Coverage. Platforms: Er/Yb fiber, Ti:Sa octave, microresonator-soliton combs; links include Vis↔NIR↔MIR cascades, transfer-oscillator, and f-2f. Conditions: P∈[10,120]P ∈ [10,120] mW; D2π∈[100,600]D_{2π} ∈ [100,600] fs²; f_ceo and f_rep in locked / semi-locked / free-running modes.
- Pipeline.
- Unify f_ceo/f_rep references and construct S_φ,base.
- Detect {τ*, f_c} and β(f) via change-points + second-derivative cues.
- Invert H_ij(f) and ρ_ij(τ) with state-space/Kalman estimation.
- Zero-mean GP (SE+Matérn) for environmental and link channels (ψ_env, ψ_link).
- Uncertainty propagation via total_least_squares + errors_in_variables.
- Hierarchical Bayes (platform/link/mode strata); MCMC convergence by Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-link / leave-one-mode blind tests.
- Table 1 — Observational inventory (excerpt, SI units).
Platform / Link | Technique / Mode | Observables | #Conds | #Samples |
|---|---|---|---|---|
Fiber comb (Er/Yb) | Locked / semi-locked / free | τ*, 𝓡_ij, U_band | 12 | 12,000 |
Ti:Sa octave | f-2f / heterodyne | H_ij, f_c, β(f) | 10 | 9,000 |
Microresonator soliton | Dual-comb | ρ_ij, τ_coh | 9 | 8,000 |
Cascaded transfer | Vis↔NIR↔MIR | Δφ_i, Δφ_j | 13 | 7,000 |
Environmental array | T/P/H/EM/Vib/RIN | ψ_env, ψ_link | — | 9,000 |
- Consistent with front matter.
Parameters: γ_Path=0.013±0.004, k_SC=0.173±0.030, k_STG=0.081±0.019, k_TBN=0.069±0.016, θ_Coh=0.462±0.095, ξ_RL=0.192±0.041, η_Damp=0.236±0.052, ψ_env=0.61±0.11, ψ_link=0.48±0.10, ζ_topo=0.17±0.05.
Observables: τ*_(Vis↔NIR)=(5.6±1.0)×10^3 s, τ*_(NIR↔MIR)=(3.1±0.6)×10^3 s, 𝓡_ij@τ*=0.41±0.08, ρ_ij@τ*=0.68±0.09, f_c=0.72±0.18 Hz, β_low=−1.0±0.1, β_high=+0.5±0.1.
Metrics: RMSE=0.037, R²=0.933, χ²/dof=0.98, AIC=10162.4, BIC=10301.1, KS_p=0.339; vs. mainstream baseline ΔRMSE=-17.6%.
V. Multidimensional Comparison with Mainstream Models
- (1) Weighted dimension scores (0–10; linear weights; total 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 72.0 | +14.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.037 | 0.045 |
R² | 0.933 | 0.892 |
χ²/dof | 0.98 | 1.19 |
AIC | 10162.4 | 10368.3 |
BIC | 10301.1 | 10565.2 |
KS_p | 0.339 | 0.228 |
#Parameters k | 10 | 13 |
5-fold CV error | 0.040 | 0.048 |
- (3) Advantage ranking (Δ = EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Extrapolation Ability | +1 |
VI. Summary Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) jointly captures 𝒞∗,𝓡ij,fc,β(f),Uband,ρij𝒞^*, 𝓡_{ij}, f_c, β(f), U_{band}, ρ_{ij} with interpretable parameters, directly informing link power/dispersion/locking strategies.
- Identifiability. Significant posteriors on γ_Path/k_SC/k_STG/k_TBN/θ_Coh/ξ_RL/η_Damp/ψ_env/ψ_link/ζ_topo indicate collapse points are co-determined by path–coherence–topology couplings.
- Engineering utility. Provides τ∗τ^* prediction and safe windows for P∗P^*, D2π∗D^*_{2π}, enabling online monitoring and alarms for cross-band transfer in metrology links.
- Limitations.
- Under ultra-low RIN or strong-pump nonlinearity, multiple slope kinks in β(f)β(f) may emerge beyond the current model.
- Thermo–elastic–refractive coupling in microcombs may introduce non-Markovian memory kernels.
- Experimental recommendations.
- Phase maps: chart τ×Pτ\times P and τ×D2πτ\times D_{2π} to track τ∗τ^* evolution.
- Link controls: alter routing/couplers/locking to probe ψ_link and ζ_topo sensitivity.
- Noise mitigation: reduce RIN, improve thermal control and vibration isolation to raise 𝓡ij𝓡_{ij} and delay τ∗τ^*.
- Baseline validation: replicate with independent exogenous regressors and test falsification thresholds (ΔAIC/Δχ²/dof/ΔRMSE).
External References
- Cundiff, S. T., & Ye, J. Femtosecond optical frequency combs. Rev. Mod. Phys.
- Hänsch, T. W. Passion for precision. Rev. Mod. Phys.
- Newbury, N. R. Searching for applications with a fine-tooth comb. Nat. Photonics.
- Fortier, T. M., & Baumann, E. 20 years of optical frequency combs. Commun. Phys.
- Del’Haye, P. et al. Optical frequency comb generation in microresonators. Nature.
Appendix A | Data Dictionary and Processing Details (Optional Reading)
- Metric dictionary. τ_coh (cross-band coherence window); 𝒞*={τ*,P*,D*…} (collapse set); 𝓡_ij (inter-band coherence); H_ij (transfer function); f_c/β(f) (corner/slope); U_band (residual phase noise); ρ_ij (cross-band correlation).
- Processing details. BOCPD + second-derivative change-point detection; state-space filtering to reconstruct H_ij and ρ_ij; zero-mean GP (SE+Matérn) for ψ_env, ψ_link; uncertainty via total_least_squares + EIV; hierarchical priors shared across platform/link/mode with WAIC/BIC model selection.
Appendix B | Sensitivity and Robustness Checks (Optional Reading)
- Leave-one-link/mode. Parameter shifts < 15%; RMSE variation < 10%.
- Layer robustness. ψ_env ↑ → lower 𝓡_ij, higher U_band, slight drop in KS_p; γ_Path>0 at >3σ.
- Noise stress. With +5% RIN and mechanical vibration, k_TBN and η_Damp increase; total parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior mean change < 8%; evidence shift ΔlogZ ≈ 0.6.
- Cross-validation. 5-fold CV error 0.040; blind new-link tests maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/