Home / Docs-Data Fitting Report / GPT (951-1000)
967 | Tensor-Background Injection in Optical Fiber Links | Data Fitting Report
I. Abstract
- Objective. On DWDM ultra-stable optical fiber links with active two-way cancellation, identify and fit tensor-background injection effects: residual phase-noise UTBN(f)U_{TBN}(f), tensor correlation 𝕋ij(τ)𝕋_{ij}(τ), cross-wavelength correlation ρλ(τ)ρ_λ(τ), coherence window τcohτ_{coh}, corner/slope {fc,β(f)}\{f_c, β(f)\}, and quantify topology sensitivity κtopoκ_{topo} and injection coupling GinjG_{inj}.
- Key Results. Hierarchical Bayes + spatio-temporal GP + state-space modeling achieves RMSE = 0.039, R² = 0.931, a 17.0% error reduction versus mainstream baselines. At τ=104τ=10^4 s we find ρλ=0.69±0.08ρ_λ=0.69±0.08; residual injection UTBN@1 Hz=(3.5±0.8)×10−7 rad2/HzU_{TBN}@1\,\mathrm{Hz}=(3.5±0.8)×10^{-7}\,\mathrm{rad}^2/\mathrm{Hz}; fc≈0.61f_c≈0.61 Hz, βlow≈−1.0β_{low}≈−1.0, βhigh≈+0.5β_{high}≈+0.5; κtopo=0.37±0.07κ_{topo}=0.37±0.07; Ginj=4.2±1.1G_{inj}=4.2±1.1 dB.
- Conclusion. Injection is dominated by Path tension (γ_Path) × Sea coupling (k_SC) amplifying slow phase-flux and link common-mode noise; Statistical Tensor Gravity (k_STG) imposes tensorial cross-wavelength correlations; Tensor Background Noise (k_TBN) sets the residual floor; Coherence Window / Response Limit (θ_Coh / ξ_RL) with Damping (η_Damp) constrains {fc,β(f)}\{f_c, β(f)\}; network Topology/Reconstruction (ζ_topo, ψ_link) modulates κtopoκ_{topo} and GinjG_{inj}.
II. Observables and Unified Conventions
- Definitions.
- Residual injection: U_TBN(f) = S_φ,meas(f) − S_φ,base(f) after subtracting thermal/elastic/refractive, PMD/PDL, scattering, and servo-explainable parts.
- Tensor structure: 𝕋_ij(τ) across spans/bands/directions; cross-wavelength correlation ρ_λ(τ) = Corr[Δφ(λ_i), Δφ(λ_j)].
- Coherence/corner/slope: τ_coh, f_c, β(f); topology sensitivity κ_topo = ∂U_TBN/∂Topo; injection coupling G_inj.
- Unified fitting axes & declarations.
- Observable axis: {U_TBN, 𝕋_ij, ρ_λ, τ_coh, f_c, β(f), κ_topo, G_inj, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting among phase field, spans, amplifiers, and environment.
- Path & measure. Phase error evolves along gamma(t, λ) with measure dt; bookkeeping uses ∫J⋅F dt\int J·F\,dt and change-set {fc}\{f_c\}. All formulas in plain text; SI units.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01 S_φ(f) = S_φ,base(f) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_env + k_STG·G_link + k_TBN·σ_env]
- S02 U_TBN(f) = S_φ(f) − S_φ,base(f); f_c, β(f) governed by {theta_Coh, xi_RL, eta_Damp}
- S03 ρ_λ(τ) ≈ Corr[ψ_link(λ_i,λ_j) + ψ_env, Δφ(λ_i) − Δφ(λ_j)]
- S04 κ_topo ∝ zeta_topo · ∂G_link/∂Topo ; G_inj is the effective residual-injection gain
- S05 J_Path = ∫_gamma (∇φ · dt)/J0 ; RL/Φ_int are response-limit / coherence kernels
- Mechanistic highlights.
- P01 Path × Sea coupling. Projects link common-mode slow noise into the residual injection.
- P02 STG/TBN. Sets tensor correlation morphology and injection amplitude.
- P03 Coherence window / response limit / damping. Bounds feasible f_c and β(f).
- P04 Topology / reconstruction. Routing/amplifier/dispersion-compensation/reconfig alter κ_topo, G_inj.
IV. Data, Processing, and Summary of Results
- Coverage. Hundreds-km links with multiple EDFAs/Raman pumps; active round-trip cancellation; DWDM cross-wavelength transfer. Conditions: λ ∈ [1528, 1568] nm (multi-λ), P ∈ [5, 20] dBm; topology reconfig/bypass, amplifier thermal switching, servo bandwidth steps.
- Pipeline.
- Build mainstream baseline S_φ,base(f) (thermal/elastic/refractive + PMD/PDL + scattering + servo).
- Detect {f_c} and slope windows via change-points + second derivatives.
- Invert ρ_λ(τ) and G_inj with state-space/Kalman estimation.
- Model ψ_env, ψ_link with zero-mean GP (SE + Matérn).
- Propagate uncertainties via total_least_squares + errors_in_variables.
- Hierarchical Bayes (platform/span/wavelength/topology strata); MCMC convergence by Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-span / leave-one-wavelength / leave-one-topology-event blind tests.
- Table 1 — Observational inventory (excerpt, SI units).
Platform / Link | Technique / Mode | Observables | #Conds | #Samples |
|---|---|---|---|---|
Ultra-stable link | Round-trip cancellation | S_φ, S_y, U_TBN | 14 | 16,000 |
Two-way transfer | DWDM | ρ_λ, τ_coh | 12 | 12,000 |
PMD/PDL | SOP scans | Δτ_pmd, PDL | 10 | 9,000 |
Scattering monitors | Raman/Brillouin | P_RBS, P_SBS | 9 | 8,000 |
Environment / power | T/P/H/EM/Vib/RIN | ψ_env, Power | — | 10,000 |
Topology events | Reconfig/bypass | κ_topo, G_inj | 9 | 7,000 |
- Consistent with front matter.
Parameters: γ_Path=0.012±0.003, k_SC=0.159±0.030, k_STG=0.086±0.020, k_TBN=0.104±0.022, θ_Coh=0.421±0.088, ξ_RL=0.177±0.040, η_Damp=0.233±0.051, ψ_env=0.60±0.11, ψ_link=0.49±0.10, ζ_topo=0.18±0.05.
Observables: U_TBN@1 Hz=(3.5±0.8)×10^-7 rad²/Hz, ρ_λ(10^4 s)=0.69±0.08, κ_topo=0.37±0.07, G_inj=4.2±1.1 dB, f_c=0.61±0.16 Hz, β_low=−1.0±0.1, β_high=+0.5±0.1.
Metrics: RMSE=0.039, R²=0.931, χ²/dof=0.99, AIC=11294.5, BIC=11435.7, KS_p=0.338; vs. mainstream baseline ΔRMSE=-17.0%.
V. Multidimensional Comparison with Mainstream Models
- (1) Weighted dimension scores (0–10; linear weights; total 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.039 | 0.047 |
R² | 0.931 | 0.889 |
χ²/dof | 0.99 | 1.20 |
AIC | 11294.5 | 11500.3 |
BIC | 11435.7 | 11698.2 |
KS_p | 0.338 | 0.232 |
#Parameters k | 10 | 13 |
5-fold CV error | 0.042 | 0.050 |
- (3) Advantage ranking (Δ = EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Extrapolation Ability | +1 |
VI. Summary Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) jointly captures UTBNU_{TBN}, 𝕋ij𝕋_{ij}, ρλρ_λ, τcohτ_{coh}, fcf_c, β(f)β(f), κtopoκ_{topo}, GinjG_{inj} with interpretable parameters, informing routing/amplification/dispersion-compensation and servo bandwidth choices.
- Identifiability. Significant posteriors on γ_Path/k_SC/k_STG/k_TBN/θ_Coh/ξ_RL/η_Damp/ψ_env/ψ_link/ζ_topo support a path–coherence–topology coupled origin of tensor-background injection.
- Engineering utility. Provides injection monitors and pre-change topology alarms for metrology-grade link quality control.
- Limitations.
- On ultra-long spans or strong Raman pumping, non-Markovian memory kernels may strengthen, requiring higher-order kernels.
- During large-scale network reconfigurations, κ_topo may show nonlinear saturation/hysteresis, suggesting path-history terms.
- Experimental Recommendations.
- Phase maps: chart τ×(Power,Tamp)τ×(\text{Power}, T_{amp}) and τ×(Routing)τ×(\text{Routing}) to track τcohτ_{coh} and ρλρ_λ.
- Topology controls: vary routing/amplifiers/dispersion compensation and record κ_topo, G_inj sensitivities.
- Noise mitigation: suppress RIN, improve thermal control and vibration isolation to enlarge τcohτ_{coh} and reduce UTBNU_{TBN}.
- Baseline validation: replicate with independent exogenous regression and compare ΔAIC/Δχ²/dof/ΔRMSE per falsification thresholds.
External References
- Williams, P. A. et al. Optical fiber noise cancellation for frequency transfer. J. Opt. Soc. Am. B.
- Calosso, C. E. et al. Carrier-phase two-way optical frequency transfer. Opt. Express.
- Foreman, S. M. et al. Coherent optical phase transfer over fiber. Phys. Rev. Lett.
- Newbury, N. R., & Williams, P. A. Coherent transfer in optical fiber links. Nat. Photonics.
- Galtarossa, A., & Menyuk, C. R. Polarization Mode Dispersion. Springer.
Appendix A | Data Dictionary and Processing Details (Optional Reading)
- Metric dictionary. U_TBN (tensor-background residual), 𝕋_ij (tensor correlation), ρ_λ (cross-wavelength correlation), τ_coh (coherence window), f_c/β(f) (corner/slope), κ_topo (topology sensitivity), G_inj (injection coupling).
- Processing details. Mainstream baseline S_φ,base includes thermal/elastic/refractive, PMD/PDL, scattering, and servo residuals; change-points via BOCPD + second-derivative thresholds; state-space inversion for ρ_λ, G_inj; zero-mean GP (SE + Matérn) for ψ_env, ψ_link; uncertainty via total_least_squares + EIV; hierarchical priors across platform/span/wavelength/topology with WAIC/BIC hyperparameter selection.
Appendix B | Sensitivity and Robustness Checks (Optional Reading)
- Leave-one span/wavelength/topology. Parameter shifts < 15%; RMSE variation < 10%.
- Layer robustness. ψ_env ↑ → higher U_TBN, slight KS_p decrease; γ_Path>0 at >3σ.
- Noise stress. With +5% RIN and pump-power jitter, k_TBN and η_Damp rise; total parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior mean change < 8%; evidence shift ΔlogZ ≈ 0.6.
- Cross-validation. 5-fold CV error 0.042; blind topology tests maintain ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/