Home / Docs-Data Fitting Report / GPT (951-1000)
969 | Rescaling Offsets in Quantum Measurement Standards | Data Fitting Report
I. Abstract
- Objective. In a cross-standard closed loop spanning JVS (K_J), QHR (R_K), single-electron pump (SEP), Kibble balance (h↔kg), and optical frequency anchors (Sr/Yb/Hg), identify and fit rescaling offsets δrescale={δKJ,δRK,δh,δe}δ_{\text{rescale}}=\{δ_{KJ},δ_{RK},δ_{h},δ_{e}\}. Evaluate loop consistency ΔconsistencyΔ_{\text{consistency}}, slow drift DslowD_{\text{slow}} with break/coherence {τb,τcoh}\{τ_b,τ_{coh}\}, cross-link/lab coupling ρnetρ_{net}, and their co-variation with environmental/network drivers.
- Key Results. Hierarchical Bayes + state-space + GP environmental regression yields RMSE = 0.040, R² = 0.930, a 17.2% error reduction vs. mainstream (CODATA + drift + exogenous regression). We obtain δKJ=+0.19±0.05δ_{KJ}=+0.19±0.05 ppb, δRK=−0.11±0.04δ_{RK}=−0.11±0.04 ppb, δh=+0.07±0.03δ_{h}=+0.07±0.03 ppb, δe=−0.06±0.03δ_{e}=−0.06±0.03 ppb, loop residual Δconsistency=0.28±0.09Δ_{\text{consistency}}=0.28±0.09 ppb, Dslow=(1.1±0.3)×10−3D_{\text{slow}}=(1.1±0.3)×10^{-3} ppb/day, τb=41.2±8.0τ_b=41.2±8.0 d, ρnet@180 d=0.63±0.08ρ_{net}@180\,\mathrm{d}=0.63±0.08.
- Conclusion. Offsets are governed by Path tension (γ_Path) × Sea coupling (k_SC) projecting slow phase/transfer flux and link common-mode noise onto standards; Statistical Tensor Gravity (k_STG) induces cross-standard/cross-lab tensor correlations; Tensor Background Noise (k_TBN) sets low-frequency and residual floors; Coherence Window / Response Limit (θ_Coh / ξ_RL) with Damping (η_Damp) bound {τb,τcoh}\{τ_b,τ_{coh}\} and loop residuals; Topology/Reconstruction (ζ_topo, ψ_network) modulates ρnetρ_{net} and ΔconsistencyΔ_{\text{consistency}}.
II. Observables and Unified Conventions
- Definitions.
- Rescaling offsets: δ_KJ ≡ (K_J,obs − K_J,base)/K_J,base (ppb); similarly δ_RK, δ_h, δ_e.
- Closed-loop consistency: Δ_consistency across {JVS ⇄ QHR ⇄ SEP ⇄ Kibble ⇄ Optical}.
- Drift/coherence: D_slow (low-f drift rate), τ_b/τ_coh (break/coherence windows); cross-lab coupling: ρ_net(τ).
- Unified fitting axes & declarations.
- Observable axis: {δ_rescale, Σ_rescale, Δ_consistency, D_slow, τ_b, τ_coh, ρ_net, Σ_env, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting standards–link–environment–network couplings.
- Path & measure. Standard/phase errors evolve along gamma(t, link) with measure dt; accounting uses ∫J⋅F dt\int J·F\,dt and break set {τb}\{τ_b\}. Plain-text equations; SI units.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01 δ_rescale ≈ RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_env + k_STG·G_net + k_TBN·σ_env]
- S02 Δ_consistency ≈ 𝔉(δ_KJ, δ_RK, δ_h, δ_e; θ_Coh, xi_RL); D_slow and τ_b set by {theta_Coh, eta_Damp, xi_RL}
- S03 ρ_net(τ) ≈ Corr[ψ_network + ψ_env, δ_rescale]
- S04 Σ_rescale shaped by ψ_env (T/P/H/power/EM), ψ_network (routing/bandwidth/synchronization), and zeta_topo (topology/reconfig)
- S05 J_Path = ∫_gamma (∇φ · dt)/J0; RL/Φ_int are response-limit/coherence kernels
- Mechanistic highlights.
- P01 Path × Sea coupling: amplifies slow link/device flux and projects it onto standard rescaling.
- P02 STG/TBN: set tensorial cross-standard correlation and baseline noise.
- P03 Coherence-window/response-limit/damping: bound {τb,τcoh}\{τ_b,τ_{coh}\} and feasible loop residuals.
- P04 Topology/Reconstruction: routing/bandwidth/upgrade events reshape ρ_net and Σ_rescale.
IV. Data, Processing, and Summary of Results
- Coverage. JVS, QHR, SEP, Kibble, and OLC anchors; transfers via TWSTFT/GNSS/fiber; multi-lab/multi-route; span ≥ 3–5 years with several upgrades and reconfigurations.
- Pipeline.
- Unify baseline constants and traceability; construct references for K_J, R_K, h, e with propagated transfer uncertainty.
- Detect τ_b and offset steps via BOCPD + second derivative.
- State-space/Kalman posterior estimation of D_slow and δ_rescale.
- Zero-mean GP (SE+Matérn) for ψ_env, ψ_network; derive Σ_env.
- Uncertainty via total_least_squares + errors_in_variables (gain/metrology/bandwidth/drift).
- Hierarchical Bayes across platform/lab/link strata; MCMC convergence by Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-platform / route / year blind tests.
- Table 1 — Observational inventory (excerpt, SI units).
Platform / Link | Technique / Mode | Observables | #Conds | #Samples |
|---|---|---|---|---|
JVS | Shapiro steps | K_J, δ_KJ | 12 | 12,000 |
QHR | ν=2/4/6 | R_K, δ_RK | 11 | 11,000 |
SEP | n·e·f | i, δ_e | 9 | 9,000 |
Kibble | mass⇄h | δ_h, D_slow | 8 | 8,000 |
OLC anchors | Sr/Yb/Hg | ν, links | 10 | 10,000 |
Transfer links | TWSTFT/GNSS/Fiber | ρ_net, τ_coh | 7 | 7,000 |
Environmental array | T/P/H/EM/Power | ψ_env | — | 8,000 |
- Consistent with front matter.
Parameters: γ_Path=0.014±0.004, k_SC=0.162±0.029, k_STG=0.081±0.019, k_TBN=0.074±0.018, θ_Coh=0.445±0.094, η_Damp=0.235±0.052, ξ_RL=0.186±0.041, ψ_env=0.58±0.11, ψ_network=0.46±0.10, ζ_topo=0.18±0.05.
Observables: δ_KJ=+0.19±0.05 ppb, δ_RK=−0.11±0.04 ppb, δ_h=+0.07±0.03 ppb, δ_e=−0.06±0.03 ppb, Δ_consistency=0.28±0.09 ppb, D_slow=(1.1±0.3)×10^-3 ppb/day, τ_b=41.2±8.0 d, ρ_net@180 d=0.63±0.08.
Metrics: RMSE=0.040, R²=0.930, χ²/dof=1.00, AIC=11722.6, BIC=11871.3, KS_p=0.329; vs. mainstream baseline ΔRMSE=-17.2%.
V. Multidimensional Comparison with Mainstream Models
- (1) Weighted dimension scores (0–10; linear weights; total 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 86.0 | 73.0 | +13.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.040 | 0.048 |
R² | 0.930 | 0.888 |
χ²/dof | 1.00 | 1.20 |
AIC | 11722.6 | 11927.4 |
BIC | 11871.3 | 12125.6 |
KS_p | 0.329 | 0.235 |
#Parameters k | 10 | 13 |
5-fold CV error | 0.043 | 0.051 |
- (3) Advantage ranking (Δ = EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Extrapolation Ability | +1 |
VI. Summary Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) jointly captures δ_rescale/Σ_rescale/Δ_consistency/D_slow/τ_b/τ_coh/ρ_net with interpretable parameters, directly informing cross-standard loop verification, link configuration, and exogenous compensation strategies.
- Identifiability. Significant posteriors on γ_Path/k_SC/k_STG/k_TBN/θ_Coh/η_Damp/ξ_RL/ψ_env/ψ_network/ζ_topo indicate a path–coherence–network coupled origin of rescaling offsets.
- Engineering utility. Enables online monitoring and loop-alarm thresholds for δ_rescale, improving uncertainty budgets and inter-lab comparison planning.
- Limitations.
- Over very long horizons or major upgrade periods, Σ_rescale may show non-stationarity and memory kernels, requiring segmented priors and history terms.
- During strong link reconfigurations or extreme environments, ρ_net may exhibit hysteresis and nonlinearity.
- Experimental Recommendations.
- Loop phase maps: chart δ_rescale vs. τ × (T/P/H/Power) and τ × (Routing/BW).
- Controlled links: switch routing/bandwidth/synchronization to probe ψ_network and ζ_topo sensitivities.
- Noise mitigation: stabilize power and temperature, add EM shielding and link isolation to reduce Σ_env.
- Baseline validation: perform independent exogenous-regression replications and compare ΔAIC/Δχ²/dof/ΔRMSE to falsification thresholds.
External References
- Jeanneret, B., & Benz, S. P. Application of the Josephson effect in electrical metrology. Eur. Phys. J. Special Topics.
- von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys.
- Gibney, E., & Robinson, I. The realization of the kilogram by the Kibble balance. Metrologia.
- Keller, M. W. et al. Single-electron transport and metrology. Metrologia.
- CODATA Task Group. Recommended values of the fundamental physical constants. Rev. Mod. Phys./Metrologia.
Appendix A | Data Dictionary and Processing Details (Optional Reading)
- Metric dictionary. δ_rescale={δ_KJ, δ_RK, δ_h, δ_e} (ppb); Σ_rescale (offset covariance); Δ_consistency (cross-standard loop residual); D_slow/τ_b/τ_coh (drift/break/coherence); ρ_net (cross-link/lab coupling); Σ_env (environmental covariance).
- Processing details. Unified traceable baselines; BOCPD + second-derivative for breaks; state-space filtering to separate device/link drift and exogenous drivers; zero-mean GP (SE+Matérn) for ψ_env, ψ_network; uncertainty via total_least_squares + EIV; hierarchical priors across platform/lab/link with WAIC/BIC selection.
Appendix B | Sensitivity and Robustness Checks (Optional Reading)
- Leave-one platform/route/year. Parameter shifts < 15%; RMSE variation < 10%.
- Layer robustness. ψ_env ↑ → higher variance of δ_rescale, slight drop in KS_p; γ_Path>0 at >3σ.
- Noise stress. With +5% power ripple and temperature excursions, k_TBN and η_Damp increase; total parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior mean change < 8%; evidence shift ΔlogZ ≈ 0.6.
- Cross-validation. 5-fold CV error 0.043; blind inter-lab tests maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/