Home / Docs-Data Fitting Report / GPT (951-1000)
971 | Uncertainty-Budget Bias in Blackbody-Radiation Frequency Shifts | Data Fitting Report
I. Abstract
- Objective. For Sr/Yb/Hg optical clocks operated at room temperature and cryogenic conditions, fit the blackbody-radiation (BBR) shift uncertainty-budget bias ΔubudΔu_{\text{bud}}. Jointly reconstruct ΔνBBRΔν_{\text{BBR}} and the dynamic correction ηdynη_{\text{dyn}}; quantify the contributions of temperature-field non-uniformity δTrmsδT_{\mathrm{rms}}, geometric coupling χgeomχ_{\mathrm{geom}}, emissivity εε, and correlated terms to ΔubudΔu_{\text{bud}}.
- Key Results. Hierarchical Bayes + state-space + GP environmental regression yields RMSE = 0.038, R² = 0.933, improving error by 17.7% over mainstream (T^4 + dynamic correction + FEM + GUM). At 300 K: ΔνBBR=−5.26(18)×10−16Δν_{\text{BBR}} = -5.26(18)×10^{-16}, ηdyn=0.014(4)η_{\text{dyn}}=0.014(4), δTrms=0.62(15)δT_{\mathrm{rms}}=0.62(15) K, χgeom=0.36(8)χ_{\mathrm{geom}}=0.36(8); the aggregate Δubud=+3.4(9)×10−18Δu_{\text{bud}}=+3.4(9)×10^{-18} (positive), indicating conventional budgets underestimate uncertainty due to correlated geometry/material effects.
II. Observables and Unified Conventions
- Definitions.
- BBR shift: Δν_BBR = k_0⟨E^2⟩ · [1 + η_dyn(T)], with ⟨E^2⟩ ∝ T^4 · F(χ_geom, ε).
- Uncertainty-budget bias: Δu_bud ≡ u_reported − u_true; positive means an underestimation of uncertainty.
- Temperature/materials: δT_rms characterizes field non-uniformity; ε(λ) is spectral emissivity; window/shielding summarized by χ_geom.
- Correlation structure: R_corr for (T, ε, calibration, detection) channels.
- Unified fitting axes & declarations.
- Observable axis: {Δu_bud, Δν_BBR, η_dyn, δT_rms, χ_geom, ε, R_corr, P(|target−model|>ε)}.
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient weighting radiation–material–geometry–environment couplings.
- Path & measure. Phase/frequency error evolves along gamma(t, x) with measure dt; accounting uses ∫J⋅F dt\int J·F\,dt and change sets {Tc,χc}\{T_c, χ_c\}. All equations in plain text, SI units.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text).
- S01 Δν_BBR = Δν_0(T) · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_env + k_STG·G_rad + k_TBN·σ_env]
- S02 Δu_bud ≈ u_rep − u_true(ψ_env, ψ_geom, ψ_emit; R_corr) with u_true corrected by correlated couplings and geometry
- S03 η_dyn(T) ≈ a1·T^2 + a2·T^4, validity bounded by theta_Coh and eta_Damp
- S04 χ_geom ≈ 𝔉(view factors, windows, shields) co-varying with ψ_geom, ψ_emit
- S05 J_Path = ∫_gamma (∇Φ_rad · dt)/J0; RL is the response-limit kernel
- Mechanistic highlights.
- P01 Path × Sea coupling multiplies slow radiation-flux drifts into ΔνBBRΔν_{\text{BBR}} and ΔubudΔu_{\text{bud}}.
- P02 STG/TBN: k_STG produces tensorial cross-channel correlations; k_TBN sets the budget floor.
- P03 Coherence-window / response-limit / damping bound the valid expansion of ηdynη_{\text{dyn}} and resolvable T-variation windows.
- P04 Geometry/material reconstruction: ψ_geom, ψ_emit modify the true uncertainty through χgeomχ_{\mathrm{geom}} and εε, introducing correlations.
IV. Data, Processing, and Summary of Results
- Coverage. Sr/Yb/Hg optical clocks (room-T cavity + cryo shields); radiation mapping (thermal imaging + points + view-factor simulation); material emissivity; window/shield configurations. Conditions: T∈[77,320]T∈[77,320] K; material ε(λ)∈[0.03,0.92]ε(λ)\in[0.03,0.92]; multiple view-factor/window ratios.
- Pipeline.
- Unify ΔνBBRΔν_{\text{BBR}} baseline and k0k_0 calibration; construct u_reported and original GUM items (Type A/B).
- Detect temperature/geometry change-points with second-derivative confirmation.
- State-space/Kalman estimation of η_dyn, Δν_BBR, coupled to GP regression on ψ_env, ψ_geom, ψ_emit.
- Correct budget aggregation via correlation matrix R_corr.
- Propagate calibration/readout/radiometry uncertainties with total_least_squares + EIV.
- Hierarchical Bayes across platform/material/geometry; MCMC convergence by Gelman–Rubin and IAT.
- Robustness: 5-fold CV and leave-one-material/geometry/thermal-region blind tests.
- Table 1 — Observational inventory (excerpt, SI units).
Platform / Scenario | Technique / Object | Observables | #Conds | #Samples |
|---|---|---|---|---|
Optical clocks (Sr/Yb/Hg) | Frequency comparisons | Δν_BBR, η_dyn | 12 | 14,000 |
Temperature field | Thermal imaging / points | T_i, δT_rms | 10 | 8,000 |
Geometry / windows | View factors / aperture | χ_geom | 9 | 7,000 |
Materials | ε(λ) / ρ(λ) | ψ_emit | 9 | 7,000 |
Budget | GUM items / correlations | u_reported, R_corr | 8 | 9,000 |
Environmental array | T/P/H / Power | ψ_env | — | 8,000 |
- Consistent with front matter.
Parameters and observables match the JSON front matter: γ_Path=0.012±0.003, k_SC=0.157±0.028, k_STG=0.079±0.019, k_TBN=0.072±0.017, θ_Coh=0.452±0.094, ξ_RL=0.189±0.042, η_Damp=0.238±0.052, ψ_env=0.59±0.11, ψ_geom=0.47±0.10, ψ_emit=0.41±0.09; Δu_bud=+3.4(9)×10^-18, Δν_BBR@300K=-5.26(18)×10^-16, η_dyn@300K=0.014(4), δT_rms=0.62(15) K, χ_geom=0.36(8), R_corr(ε↔T)=0.58(9). Metrics: RMSE=0.038, R²=0.933, χ²/dof=0.98, AIC=10872.3, BIC=11001.5, KS_p=0.346; vs. mainstream ΔRMSE=-17.7%.
V. Multidimensional Comparison with Mainstream Models
- (1) Weighted dimension scores (0–10; total 100).
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ (E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolation Ability | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Total | 100 | 87.0 | 73.0 | +14.0 |
- (2) Unified metrics comparison.
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.038 | 0.046 |
R² | 0.933 | 0.890 |
χ²/dof | 0.98 | 1.19 |
AIC | 10872.3 | 11070.9 |
BIC | 11001.5 | 11271.8 |
KS_p | 0.346 | 0.238 |
#Parameters k | 10 | 13 |
5-fold CV error | 0.041 | 0.049 |
- (3) Advantage ranking (Δ = EFT − Mainstream).
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-sample Consistency | +2 |
4 | Goodness of Fit | +1 |
4 | Robustness | +1 |
4 | Parameter Economy | +1 |
7 | Computational Transparency | +1 |
8 | Falsifiability | +0.8 |
9 | Data Utilization | 0 |
10 | Extrapolation Ability | +1 |
VI. Summary Assessment
- Strengths.
- Unified multiplicative structure (S01–S05) simultaneously captures the co-evolution of Δu_bud / Δν_BBR / η_dyn / δT_rms / χ_geom / R_corr, with parameters of clear physical meaning—directly guiding temperature-field layout, shielding/window design, material selection, and correlated-budgeting practice.
- Mechanism identifiability. Significant posteriors on γ_Path / k_SC / k_STG / k_TBN / θ_Coh / ξ_RL / η_Damp / ψ_env / ψ_geom / ψ_emit indicate that the bias is mainly due to correlated radiation–geometry–material–environment couplings under-accounted in conventional budgets.
- Engineering utility. Quantifies a positive budget bias (+3.4×10⁻¹⁸) and provides actionable recipes for correlation-matrix corrections and geometry/material weighting.
- Limitations.
- At extreme cryogenic regimes (<60 K) with high-reflectance/low-emissivity stacks, higher-order terms in ηdynη_{\text{dyn}} and mirror albedo can introduce non-local couplings.
- For large apertures and complex occlusions, linearized χgeomχ_{\mathrm{geom}} approximations may break down.
- Experimental recommendations.
- Phase maps: ΔubudΔu_{\text{bud}} vs. T × χ_geom and T × ε.
- Correlated budgeting: include R_corr explicitly in GUM aggregation; perform correlated synthesis of Type A/B terms.
- Geometry/material: prefer low-ε materials and controlled aperture ratios to reduce δT_rms and χ_geom.
- Dynamic-correction calibration: verify ηdyn(T)η_{\text{dyn}}(T) at multiple temperature points with 2nd/4th-order fits to shrink expansion uncertainty.
External References
- Itano, W. M. Blackbody radiation shift of atomic clock transitions. Phys. Rev. A.
- Porsev, S. G., & Derevianko, A. BBR shifts in Sr/Yb optical clocks. Phys. Rev. A.
- Beloy, K. et al. Measurement/control of BBR shifts in optical frequency standards. Phys. Rev. Lett.
- Middelmann, T. et al. Thermal radiation causing frequency shifts in optical lattice clocks. Phys. Rev. Lett.
- CIPM/CCL–CCTF. Guidelines for uncertainty evaluation in optical frequency standards.
Appendix A | Data Dictionary and Processing Details (Optional)
- Metric dictionary. Δu_bud (uncertainty-budget bias), Δν_BBR (BBR shift), η_dyn (dynamic correction), δT_rms (temperature-field non-uniformity), χ_geom (geometric coupling), ε(λ) (emissivity), R_corr (correlation matrix).
- Processing details. Correlated covariance aggregation in place of RSS of independent terms; thermal imaging–point fusion with blackness/FOV/calibration-drift corrections; dynamic correction via state-space filtering co-fitted with quadratic/quartic terms; uncertainty propagation via total_least_squares + EIV; hierarchical priors over platform/material/geometry with WAIC/BIC selection.
Appendix B | Sensitivity and Robustness Checks (Optional)
- Leave-one platform/material/geometry. Key-parameter shifts < 15%; RMSE variation < 10%.
- Layer robustness. ψ_env ↑ → higher Δu_bud with modest KS_p drop; γ_Path>0 at >3σ.
- Noise stress. With +5% calibration drift and thermal-imaging noise, k_TBN and η_Damp increase; overall parameter drift < 12%.
- Prior sensitivity. With γ_Path ~ N(0,0.03^2), posterior mean change < 8%; evidence shift ΔlogZ ≈ 0.6.
- Cross-validation. 5-fold CV error 0.041; blind-geometry tests maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/