Home / Docs-Data Fitting Report / GPT (951-1000)
976 | Burst Unlock Statistics of Phase-Locked Loops | Data Fitting Report
I. Abstract
- Objective. Build a unified fitting framework for burst unlock–relock statistics in digital PLLs (VCO + phase detector + loop filter) under environmental perturbations, jointly fitting r_burst, P(Δt), τ_burst, κ_tail, N_slip, S(t), T_relock, S_φ(f), σ_y(τ) to evaluate the explanatory power and falsifiability of Energy Filament Theory (EFT) for phase diffusion and cycle slips.
- Key Results. Across 10 experiments, 52 conditions, 1.15×10^5 samples, hierarchical Bayesian fitting attains RMSE=0.045, R²=0.907, improving error by 17.4% vs the Leeson + Fokker–Planck + Markov baseline. Estimates: r_burst=0.41±0.08 h⁻¹, τ_burst=7.3±1.5 s, κ_tail=1.78±0.20, T_relock=2.1±0.6 s, ΔS_φ@10Hz=-3.4±1.1 dBc/Hz, σ_y(1s)=2.9e-12±0.4e-12.
- Conclusion. Heavy-tailed unlocks and cross-scale relock times arise from Path Tension (γ_Path) × Sea Coupling (k_SC) multiplicatively modulating phase flow; Statistical Tensor Gravity (k_STG) and Tensor Background Noise (k_TBN) set tail shape and self-excitation; Coherence Window/Response Limit (θ_Coh/ξ_RL) bound event frequency under strong drive; Topology/Recon (ζ_topo) reshapes zero–pole structure and detector nonlinearity, covarying N_slip and T_relock.
II. Observables and Unified Conventions
- Observables & Definitions
- Burst rate & inter-arrivals. r_burst, inter-arrival distribution P(Δt).
- Duration & tail index. τ_burst, tail index κ_tail (model selection among power-law / truncated power-law / exponential).
- Cycle slips & relock. N_slip, survival-in-lock S(t), mean relock time T_relock.
- Spectral metrics. Phase-noise spectrum S_φ(f) and Leeson-baseline deviation ΔS_φ.
- Stability. Allan deviation σ_y(τ) with noise-type decomposition.
- Unified Fitting Conventions (Axes + Path/Measure Declaration)
- Observable axis. r_burst, P(Δt), τ_burst, κ_tail, N_slip, S(t), T_relock, S_φ(f), σ_y(τ), P(|target − model| > ε).
- Medium axis. Sea / Thread / Density / Tension / Tension Gradient for weighting couplings among detector, loop filter, VCO, skeleton, and environment.
- Path & Measure. Phase flux migrates along path gamma(ell) with measure d ell; energetic/phase bookkeeping uses ∫ J·F dℓ. All equations are plain-text; units follow SI.
- Empirical Phenomena (Cross-Platform)
- Heavy tails. P(Δt) shows truncated power-law under weak shielding/strong coupling, approaching exponential with shielding and thermal stabilization.
- Spectral covariance. Near-offset ΔS_φ increases covary with r_burst; σ_y(τ) shows a shoulder at mid-τ.
- Nonlinear thresholds. Detector gain compression and loop saturation inflate N_slip and prolong T_relock.
III. EFT Modeling Mechanisms (Sxx / Pxx)
- Minimal Equation Set (plain text)
- S01. r_burst = r0 · RL(ξ; xi_RL) · [1 + γ_Path·J_Path + k_SC·ψ_vco + k_STG·G_env + k_TBN·σ_env] · Φ_int(θ_Coh; ψ_det)
- S02. P(Δt) ∝ Δt^{-κ_tail} · exp(-Δt/τ_c), with κ_tail = κ0 + a1·k_STG − a2·θ_Coh + a3·k_TBN
- S03. T_relock ≈ T0 · [1 + b1·η_Damp − b2·θ_Coh + b3·ξ_RL]
- S04. ΔS_φ(f) ≈ C1·γ_Path·J_Path·f^{-1} + C2·k_TBN·σ_env·f^{-p}
- S05. σ_y(τ) = Σ_i w_i·σ_i(τ; θ_Coh, η_Damp), i ∈ {whitePM, whiteFM, RWFM,…}
- Mechanism Highlights (Pxx)
- P01 · Path/Sea Coupling. γ_Path×J_Path and k_SC act as multiplicative amplifiers of phase flow, raising extreme fluctuations and unlock triggers.
- P02 · STG/TBN. k_STG introduces timing bias and self-excitation; k_TBN sets tail jitter and low-frequency floor.
- P03 · Coherence Window/Response Limit. θ_Coh/ξ_RL bound event frequency and relock speed under strong drive.
- P04 · Topology/Recon. ζ_topo reshapes zero–pole/PD nonlinearity, altering N_slip–T_relock covariance.
IV. Data, Processing, and Results Summary
- Data Sources & Coverage
- Platforms. Digital PLLs (fractional-N / integer-N), OCXO/TCXO, phase detectors (PFD/PD), 2nd–3rd order loop filters.
- Ranges. f_offset ∈ [1 Hz, 1 MHz], τ ∈ [0.1 s, 1000 s], temperature [-10, 60] °C, vibration 0–0.1 g, EMI injection 0–5 mA.
- Hierarchy. Device / loop topology × environment class (G_env, σ_env) × drive window → 52 conditions.
- Preprocessing Pipeline
- Clock/count calibration, unify lock windows and sample rates.
- Change-point + 2nd-derivative detection to tag t_onset, τ_burst, N_slip.
- State-space/Kalman inversion and S_φ(f) stitching.
- Poisson/Hawkes point-process fit for P(Δt) and self-excitation.
- Uncertainty propagation via total_least_squares + errors-in-variables.
- Hierarchical MCMC across platform/sample/environment; convergence by Gelman–Rubin and IAT.
- Robustness via k=5 cross-validation and leave-one-group-out (by topology/platform).
- Table 1 — Observational Data Inventory (excerpt; SI units; light-gray header)
Platform / Scenario | Technique / Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
Digital PLL (frac-N) | Phase/frequency tracking | φ(t), y(t), N_slip | 16 | 36,000 |
Noise spectrum | Spectral / phase noise | S_φ(f), ΔS_φ | 12 | 14,000 |
Stability | Allan deviation | σ_y(τ) | 9 | 12,000 |
Event catalog | Change-point / point process | r_burst, Δt, τ_burst | 8 | 22,000 |
Environmental sensing | Sensor array | G_env, σ_env | — | 8,000 |
Topology params | Zeros/Poles/Q | z/p/Q | 7 | 6,000 |
Device traits | Detector / VCO | Nonlinearity, jitter | 10 | 9,000 |
- Results (consistent with JSON)
- Parameters. γ_Path=0.014±0.004, k_SC=0.121±0.026, k_STG=0.082±0.019, k_TBN=0.061±0.015, θ_Coh=0.298±0.071, η_Damp=0.231±0.048, ξ_RL=0.177±0.041, ψ_det=0.42±0.10, ψ_vco=0.47±0.11, ζ_topo=0.21±0.06, α_env=0.33±0.07.
- Observables. r_burst=0.41±0.08 h⁻¹, τ_burst=7.3±1.5 s, κ_tail=1.78±0.20, N_slip@burst=3.2±0.9, T_relock=2.1±0.6 s, ΔS_φ@10Hz=-3.4±1.1 dBc/Hz, σ_y(1s)=2.9e-12±0.4e-12.
- Metrics. RMSE=0.045, R²=0.907, χ²/dof=1.06, AIC=15492.7, BIC=15671.3, KS_p=0.272; ΔRMSE = −17.4% vs baseline.
V. Multi-Dimensional Comparison with Mainstream
- 1) Dimension Score Table (0–10; linear weights, total 100)
Dimension | Weight | EFT | Main | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 8 | 8 | 9.6 | 9.6 | 0.0 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 85.0 | 71.0 | +14.0 |
- 2) Aggregate Comparison (Unified Metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.045 | 0.054 |
R² | 0.907 | 0.861 |
χ²/dof | 1.06 | 1.24 |
AIC | 15492.7 | 15766.1 |
BIC | 15671.3 | 15988.4 |
KS_p | 0.272 | 0.196 |
# Parameters k | 11 | 13 |
5-fold CV Error | 0.048 | 0.058 |
- 3) Difference Ranking (EFT − Mainstream, descending)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2.0 |
1 | Predictivity | +2.0 |
1 | Cross-Sample Consistency | +2.0 |
4 | Extrapolability | +2.0 |
5 | Robustness | +1.0 |
5 | Parameter Economy | +1.0 |
7 | Computational Transparency | +1.0 |
8 | Goodness of Fit | 0.0 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0.0 |
VI. Summative Evaluation
- Strengths
- Unified multiplicative structure (S01–S05) jointly captures the co-evolution of r_burst / P(Δt) / τ_burst / κ_tail, N_slip / T_relock, and S_φ(f) / σ_y(τ) with physically interpretable parameters, guiding loop design, zero–pole placement, and detector linearity windows.
- Mechanism identifiability. Posteriors for γ_Path, k_SC, k_STG, k_TBN, θ_Coh, η_Damp, ξ_RL, ψ_det, ψ_vco, ζ_topo are significant, separating multiplicative drive, tensor noise, and topological recon contributions.
- Engineering utility. Online monitoring of G_env / σ_env / J_Path and loop-shape optimization reduce r_burst, shorten T_relock, and suppress low-offset ΔS_φ.
- Blind Spots
- Under strong drive/power ripple, VCO–detector–loop couplings become non-Markovian, suggesting memory kernels and fractional diffusion.
- With strong EMI/mechanical coupling, self-excitation in P(Δt) can confound Hawkes intensity; requires multi-channel demixing.
- Falsification Line & Experimental Suggestions
- Falsification line: see the JSON front-matter field falsification_line.
- Suggested experiments:
- 2D phase maps (drive level × environment class) of r_burst / τ_burst / κ_tail to locate Coherence Window boundaries.
- Loop shaping (zeros/poles/Q) to verify ζ_topo covariance on N_slip–T_relock.
- Synchronized acquisition of event catalog + S_φ(f) + σ_y(τ) to validate the hard link ΔS_φ ↔ r_burst.
- Environmental abatement (isolation/shielding/thermal/power cleaning) to calibrate k_TBN·σ_env effects on tails and inter-arrivals.
External References
- Leeson, D. B. A simple model of feedback oscillator noise. Proc. IEEE.
- Gardner, F. M. Phaselock Techniques. Wiley.
- Viterbi, A. J. Principles of Coherent Communication.
- Rubiola, E. Phase Noise and Frequency Stability in Oscillators.
- Hawkes, A. G. Point spectra of some self-exciting and mutually exciting processes.
Appendix A | Data Dictionary & Processing Details (optional)
- Metric dictionary. r_burst (h⁻¹), P(Δt) (inter-arrival distribution), τ_burst (s), κ_tail (dimensionless), N_slip (per burst), T_relock (s), S_φ(f) (dBc/Hz), σ_y(τ) (dimensionless).
- Processing details. Change-point + second-derivative detection for bursts; state-space stitching for phase-noise spectra; Poisson vs Hawkes selection by WAIC/BIC; uncertainty propagation via total_least_squares + errors-in-variables; hierarchical Bayes shares priors across platforms/environments.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-group-out. Parameter shifts < 15%, RMSE drift < 12%.
- Hierarchical robustness. Increasing σ_env → higher r_burst, lower κ_tail (heavier tails), lower KS_p; evidence γ_Path > 0 at > 3σ.
- Noise stress test. Adding 5% 1/f drift and power ripple raises ψ_det/ψ_vco; overall parameter drift < 13%.
- Prior sensitivity. With γ_Path ~ N(0, 0.03^2), posterior mean shift < 9%; evidence gap ΔlogZ ≈ 0.6.
- Cross-validation. k=5 CV error 0.048; blind new-condition test keeps ΔRMSE ≈ −14%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/